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Hyperrealistic neural decoding 
for reconstructing faces from fMRI 
activations via the GAN latent 
space
Thirza Dado*, Yağmur Güçlütürk, Luca Ambrogioni, Gabriëlle Ras, Sander Bosch, 
Marcel van Gerven & Umut Güçlü

Neural decoding can be conceptualized as the problem of mapping brain responses back to sensory 
stimuli via a feature space. We introduce (i) a novel experimental paradigm that uses well-controlled 
yet highly naturalistic stimuli with a priori known feature representations and (ii) an implementation 
thereof for HYPerrealistic reconstruction of PERception (HYPER) of faces from brain recordings. To this 
end, we embrace the use of generative adversarial networks (GANs) at the earliest step of our neural 
decoding pipeline by acquiring fMRI data as participants perceive face images synthesized by the 
generator network of a GAN. We show that the latent vectors used for generation effectively capture 
the same defining stimulus properties as the fMRI measurements. As such, these latents (conditioned 
on the GAN) are used as the in-between feature representations underlying the perceived images that 
can be predicted in neural decoding for (re-)generation of the originally perceived stimuli, leading to 
the most accurate reconstructions of perception to date.

Neural decoding can be conceptualized as the inverse problem of mapping brain responses back to sensory 
stimuli via a feature space1. Such a mapping can be modeled as a composite function of linear and nonlinear 
transformations (Fig. 1). A nonlinear transformation models the stimulus-feature mapping whereas the feature-
response mapping is modeled by a linear transformation. Invoking this in-between feature space factorizes the 
direct stimulus-response transformation into two to make it not only data efficient (given that neural data is 
scarce) but also possible to test alternative hypotheses about the emergence and nature of neural representations 
of the environment. That is, each stimulus-feature model transforms stimuli into a different set of underlying 
features to construct candidate feature representations. Each feature-response model then linearly transforms 
these candidate feature representations into brain responses to test similarity thereof. Feature representations 
of stimuli are assumed to have a linear relationship with neuroimaging measurements of underlying neural 
responses in that both capture the same statistical invariances in the environment.

The systematic correspondence between various feature representations of discriminative task-optimized 
(supervised) deep neural networks and neural representations of sensory cortices are well-established2–7. As 
such, exploiting this correspondence in neural decoding of visual perception has pushed the state-of-the-art 
forward1 such as classification of perceived, imagined and dreamed object categories8,9, and reconstruction 
of perceived natural images10,11, movies12 and faces13,14. However, unlike their supervised counterparts, more 
biologically plausible unsupervised deep neural networks have paradoxically been less successful in modeling 
neural representations15.

At the same time, generative adversarial networks (GANs)16 have emerged as perhaps the most powerful 
generative models to date17–19 that can potentially bring neural decoding to the next level. In short, a generator 
network is pitted against a discriminator network that learns to distinguish synthesized from real data. The goal 
of the generator is to fool the discriminator by mapping “latent” vector samples from a given (simple) distribution 
(e.g., standard Gaussian) to unique data samples that appear to have been drawn from the real data distribu-
tion. This competition drives the networks to improve in tandem until the generator has learned the unidirec-
tional mapping from latent to data distribution such that the synthesized samples are indistinguishable from 
the real ones. Importantly, this mapping can model the synthesis operation (i.e., the nonlinear feature-stimulus 
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transformation as defined under neural decoding) where the latent vectors are the feature representations under-
lying the stimuli.

For this reason, GANs have high potential in modeling neural representations but testing this hypothesis 
is not directly possible because latents cannot be obtained retrospectively; arbitrary stimuli cannot be directly 
transformed into latents since GANs do not have such an inverse transformation due to the nonlinearities of the 
(unidirectional) network. Hence, unlike the aforementioned discriminative convnets which are feature extractors 
by definition, the adoption of GANs in neural decoding has been relatively slow since they cannot be readily used 
for this purpose without resorting to approximate inversion methods (see10 for such an earlier attempt). In that 
case, the feature-stimulus transformation entails information loss as the data need to be reconstructed from the 
predicted feature representations using an approximate inversion network, leading to a severe bottleneck to the 
maximum possible reconstruction quality (i.e., the noise ceiling).

We overcome the aforementioned problem by introducing a very powerful yet simple experimental para-
digm for neural decoding where participants are presented with synthetic yet highly naturalistic stimuli with 
known latent vectors. We also present a model instance of this paradigm for HYperrealistic reconstruction of 
PERception (HYPER) which elegantly integrates GANs in neural decoding of faces by combining the following 
components (Fig. 2):

•	 A pretrained generator of a progressive growing of GAN (PGGAN)17 that generates photorealistic faces from 
latents.

•	 A new dataset of synthesized face images and whole-brain fMRI activations of two participants.
•	 A decoding model that predicts latents from fMRI activations which are fed to the generator for synthesis/

reconstruction.

We demonstrate that our approach constitutes a leap forward in our ability to reconstruct percepts from patterns 
of human brain activity.

Methods
HYPER pipeline.  An illustration of the HYPER pipeline can be found in Fig. 2. Visual face stimuli were syn-
thesized by the generator network of a GAN and presented to participants in an fMRI scanner. Neural decoding 
was performed as follows: the generator network of the GAN was extended with a dense layer at the beginning 
of the network that performed the response-feature transformation (i.e., from voxel recordings to latent vectors). 
This response-feature layer was trained by iteratively minimizing the Euclidean distance between ground-truth 
and predicted latent vectors with the Adam optimizer until convergence while keeping the rest of the network 

Figure 1.   Neural coding. The mapping between sensory stimuli (left) and brain measurements (right) via a 
feature space (middle). Neural encoding seeks to find a transformation from stimulus to the observed brain 
response. Conversely, neural decoding seeks to find the information present in the observed brain responses by 
a mapping from brain activity back to the originally perceived stimulus.

Figure 2.   Illustration of the HYPER pipeline. Face images are generated from randomly sampled latent vectors 
z by a GAN and presented as stimuli during brain scanning. A linear model predicts latent vectors ẑ for unseen 
brain responses to feed back to the GAN for reconstruction.
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fixed (batch size = 30 , learning rate = 0.00001 , weight decay = 0.01 ). Finally, the generator output were the 
reconstructed faces from brain activity.

Datasets.  Visual stimuli.  High-resolution face images ( 1024× 1024 pixels) are synthesized by the pre-
trained generator network (Fig. 3) of a Progressive GAN (PGGAN) model17 from 512-dimensional latent vec-
tors that are randomly sampled from the standard Gaussian. Each generated face image is cropped and resized 
to 224× 224 pixels. Note that none of the face images in this manuscript are of real people. They are instead 
synthesized by a generative model that is trained on the large-scale face dataset CelebFaces Attributes Dataset 
(CelebA) that consists of more than 200 K celebrity images20.

Brain responses.  fMRI data were collected from two healthy participants (S1: 30-year old male; S2: 32-year old 
male) while they were fixating a center target ( 0.6× 0.6 degrees visual angle)21 superimposed on the face stimuli 
( 15× 15 degrees visual angle) to minimize involuntary eye movements. The fMRI recordings were acquired with 
a multiband-4 protocol (TR = 1.5 s, voxel size = 2× 2× 2 mm3 , whole-brain coverage) in nine runs. Per run, 
175 faces were presented that were flickering with a frequency of 3.33 Hz for 1.5 s, followed by an inter-stimulus 
interval of 3 s (Fig. 4A). The test and training set stimuli were presented in the first three and the remaining six 
runs, respectively. In total, 36 faces were repeated ∼ 14 times for the test set and 1050 unique faces were pre-
sented once for the training set. This ensured that the training set covers a large stimulus space to fit a general 
face model whereas the voxel responses from the test set contain less noise and higher statistical power.

During preprocessing, the brain volumes were realigned to the first functional scan and the mean functional 
scan, respectively, after which the volumes were normalized to MNI space. A general linear model was fit to 
deconvolve task-related neural activation with the canonical hemodynamic response function. Next, we com-
puted the t-statistic for each voxel which was standardized to obtain brain maps in terms of z-scores. The most 
active 4096 voxels on average were selected from the training set to define a voxel mask (i.e., voxels were selected 
based on amplitude rather than significance) (Fig. 4B). Voxel responses from the test set were not used to create 
this mask to avoid circularity. To inspect contributions of different brain areas to linear decoding, we included 
the voxel distribution across the 22 main cortical brain regions according to the HCP MMP 1.0 atlas22 in the 
supplementary materials. Among the voxels that are part of the atlas, most contributions were from those in the 
ventral stream followed by MT+ and vicinity and early visual cortex.

The experiment was approved by the local ethics committee (CMO Regio Arnhem-Nijmegen). Subjects 
provided written informed consent in accordance with the Declaration of Helsinki.

Figure 3.   PGGAN generator network. The architecture consists of nine blocks with a total of 23.1 M trainable 
parameters. It transforms 512-dimensional Gaussian latent vectors into high-resolution RGB face images 
( 1024× 1024 pixels).

+++ ++ ++
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Figure 4.   (A) Experimental paradigm. Visual stimuli were flashed with a frequency of 3.33 Hz for 1.5 s 
followed by an interstimulus interval of 3 s. (B) Voxel masks. The 4096 most active voxels were selected based on 
the highest z-statistics within the averaged z-map from the training set responses.



4

Vol:.(1234567890)

Scientific Reports |          (2022) 12:141  | https://doi.org/10.1038/s41598-021-03938-w

www.nature.com/scientificreports/

Evaluation.  Model performance was evaluated in terms of three metrics: latent similarity, feature similarity 
and Pearson correlation. First, latent similarity is the Euclidean similarity between predicted and true latent vec-
tors. Concretely, let ẑ and z be the 512-dimensional predicted and true latent vectors, respectively. Latent simi-
larity is then defined as follows:

Second, feature similarity is the Euclidean similarity between feature extraction layer outputs ( n = 2048 ) 
of the ResNet50 model, pretrained for face recognition. Concretely, let x and x̂ be the 224× 224 RGB images 
of stimuli and their reconstructions, respectively. Furthermore, let f(.) be the 2048-dimensional features of the 
ResNet50 model pretrained on face recognition. Feature similarity is then defined as follows:

Third, Pearson correlation measures the standard linear (product-moment) correlation between the lumi-
nance pixel values of stimuli and their reconstructions.

Additionally, we also introduce a novel metric which we call attribute similarity. Based on the assumption that 
there exists a hyperplane in latent space for binary semantic attributes (e.g., male vs. female), Shen et al.23 have 
identified the decision boundaries for semantic face attributes in PGGAN’s latent space by training independent 
linear support vector machines on gender, age, the presence of eyeglasses, smile, and pose. Attribute scores are 
then computed by taking the inner product between latents and decision boundary. In this way, model perfor-
mance can be evaluated in terms of these specific visual attributes along a continuous spectrum.

Implementation details.  fMRI preprocessing is implemented in SPM12 after which first-order analysis 
is carried out in Nipy. We used a custom implementation of PGGAN in MXNet together with the pretrained 
weights from the original paper. A Keras pretrained implementation of VGGFace (ResNet50 model) is used to 
evaluate similarities between feature maps of the perceived and reconstructed images. The fMRI dataset for both 
subjects and used models are openly accessible (see supplementary materials).

Ethical concerns.  Care must be taken as “mind-reading” technologies also involve serious ethical concerns 
regarding mental privacy. Although current neural decoding approaches such as the one presented in this manu-
script would not allow for involuntary access to thoughts of a person, future developments may allow for the 
extraction of information from the brain more easily, as the field is rapidly developing. As with all scientific and 
technological developments, ethical principles and guidelines as well as data protection regulations should be 
followed strictly to ensure the safety of potential users of these technologies.

Results
Neural decoding of fMRI measurements via the GAN latent space has resulted in unprecedented reconstructions 
of perception. Figure 5 shows arbitrarily chosen but representative examples of stimuli and their reconstructions. 
The complete set of stimuli and reconstructions can be found in the supplementary materials. 

The performance of the HYPER model was compared to two baseline models that map the brain recordings 
onto different latent spaces. The first baseline was the state-of-the-art variational autoencoder of 13 layers which 
was trained adversarially with a discriminator network (VAE-GAN)14 to reconstruct CelebA faces ( 128× 128 
pixels) from 1024-dimensional latents. Note that the pretrained network from the original paper was used. 
Moreover, representational similarity analysis between the PGGAN and VAE-GAN latent spaces revealed these to 
be significantly dissimilar ( r = 0.0063 , p ≪ 0.05 , Student’s t-test). The second baseline was the traditional eigen-
face approach24 that predicted the first 512 principal components (or “eigenfaces”) and reconstructed face images 
( 64× 64 pixels) by applying an inverse PCA transform. For a fair comparison, the same voxel masks were used to 
evaluate all three methods presented in this study without any optimization to a particular decoding approach.

All quantitative (Table 1) and qualitative (Fig. 7) results showed that the HYPER model outperformed the 
baselines. Furthermore, a permutation test was performed where we randomly generated 1000 latent vectors 
from the same distribution as the target vectors and compared how similar the targets were to the predictions 
versus to the randomly generated latents. The targets were more similar to the predictions than to the randomly 
generated latents with p < 0.001 . Figure 6 shows similarity maps of this analysis with 35 randomly generated 
latents per target instead of 1000 for visualization purposes. A similar permutation test was also performed for 
the other feature similarity and correlation metrics with the same significance results.

Next, Fig. 8 illustrates how well HYPER decoded face attributes by matching polarity and intensity of attribute 
scores between perceived and reconstructed examples. For most stimulus-reconstruction pairs, the graphs match 
in terms of directionality. Correlating observed and predicted attribute scores resulted in significant ( p ≪ 0.05 ; 
Student’s t-test) results for gender, age, eyeglasses and pose, but not for smile (Fig. 9). 

Lastly, the reliability of the fMRI recordings was addressed using twelve single repetitions per face image from 
the test set (Fig. 10). Here, L2-regularized multiclass logistic regression with nested 3- and 12-fold cross-valida-
tion was carried out to classify face images from brain volumes. The inner three folds were used for estimating 
the regularization coefficient whereas the outer 12 folds were used for estimating the reliability. For each of the 
outer 12 folds, nine separate classifiers were trained on an increasing number of repetitions ranging from three 
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to eleven and tested on single repetitions. As expected, the highest accuracy was achieved when the maximum 
number of repetitions were used. At the same time, all classifiers performed significantly above chance-level 
regardless of the number of repetitions (p< 0.05, Student’s t-test).

Discussion
The novel experimental paradigm for neural decoding that we introduced uses synthesized yet hyperrealistic 
stimuli such that the underlying latent/feature representations needed for (re)generation are known a priori. 
The HYPER model is an implementation of this paradigm which has decoded fMRI recordings into the best 
reconstructions of perceived face images to date using the generator of a GAN that is capable of synthesizing 
photorealistic faces from latent vectors. The results indicate that unsupervised deep neural networks can success-
fully model neural representations of naturalistic stimuli and that the GAN latent space approximates the neural 
face manifold. We would like to note however that this does not mean a relationship between arbitrary Gaussian 
variables and brain activity rather one between Gaussian latents conditioned on the GAN and brain activity.

HYPER achieved considerably better reconstructions than the two baselines. Importantly, not only do we 
attribute the high performance of HYPER to the type of generative model but especially to the training on syn-
thesized yet photorealistic faces; having access to the ground-truth latent vectors from the get-go was crucial 
in exploiting the benefits of GANs in neural decoding rather than relying on approximate inference to obtain 
them as VAE-GANs do by design and GANs can do by post hoc modification10. It should also be noted that the 
reconstructions by the VAE-GAN approach appear to be of lower quality than those presented in the original 
study. Likely explanations for this are the differences in dataset size and the voxel selection procedure.

Figure 5.   Stimulus-reconstructions. The three blocks show twelve arbitrarily chosen but representative test 
set examples. The first column displays the face stimuli whereas the second and third column display the 
corresponding reconstructions from brain activations from subject 1 and 2, respectively.

Table 1.   Quantitative results. Model performance of the HYPER model compared to the state-of-the-art 
VAE-GAN approach14 and the eigenface approach24 in terms of the feature similarity (column 2) and pearson 
correlation (column 3) between stimuli and reconstructions (mean ± std error). The first column displays 
latent similarity between true and predicted latents which is only applicable to the HYPER model. For a 
fair comparison, all images are resized to 224 × 224 pixels and backgrounds are removed. The statistical 
significance of HYPER is evaluated against randomly generated latent vectors and their synthesized images.

Lat. sim. Feat. sim. Pearson. corr.

S1

HYPER
0.4722 ± 0.0024 0.1656 ± 0.0050 0.5464 ± 0.0256

(p < 0.001; perm.test) (p < 0.001; perm.test) (p < 0.001; perm.test)

VAE-GAN – 0.1416 ± 0.0025 0.3354 ± 0.0400

Eigenface – 0.1319 ± 0.0016 0.4540 ± 0.0328

S2

HYPER
0.4666 ± 0.0020 0.1665 ± 0.0058 0.5013 ± 0.0291

(p < 0.001; perm.test) (p < 0.001; perm.test) (p < 0.001; perm.test)

VAE-GAN – 0.1461 ± 0.0022 0.4137 ± 0.0353

Eigenface – 0.1261 ± 0.0019 0.4267± 0.0297
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Limitations of HYPER.  While HYPER owes its performance to the current advances in generative mod-
eling, it also inherits the limitations thereof. So far, HYPER has been evaluated by reconstructing synthetic faces 
from fMRI measurements. The next step is verifying whether a decoding model trained on brain responses 
during synthetic face perception generalizes to faces of real people. Latent vectors of real faces are not directly 
accessible but would also no longer be required when the decoding model has learned to accurately predict them 
from the synthetic data. It should however be noted that the results of this study are already valid reconstructions 
of visual perception regardless of the nature of the stimuli themselves.

Reconstructions by HYPER appear to contain biases. First, the linear model predicts primarily latent vectors 
corresponding to young, western-looking faces without eyeglasses as they tend to follow the image statistics 
of the (celebrity) training set. Second, the PGGAN generator is known to suffer from the problem of feature 

Figure 6.   Latent similarity maps. The diagonal displays the similarity between target and predicted latent 
vectors whereas off-diagonal entries display similarity between targets and randomly sampled latents from 
the same standard Gaussian distribution. The dark blue diagonal denotes that predictions always outperform 
random latents in terms of latent similarity.

Figure 7.   Qualitative results. Model performance of the HYPER model compared to VAE-GAN approach14 and 
the eigenface approach24. The model columns display the best possible results by direct encoding and decoding 
of the stimuli (i.e., noise ceiling; no brain data is used for these reconstructions). For HYPER, the stimuli 
themselves are the best possible results.
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Figure 8.   Attribute scores. Stimulus-reconstruction examples (subject 1) with rotated bar graphs denoting the 
attribute scores for gender, age, eyeglasses, pose and smile to visually demonstrate how this metric can be used 
to evaluate model performance with respect to semantic face attributes.

Figure 9.   Attribute reconstruction performance. The correlation coefficients between observed and predicted 
target scores are found to be highly significant for gender, age and pose ( p ≪ 0.05 ; Student’s t-test), significant 
for eyeglasses ( p < 0.05 ; Student’s t-test) and not significant for smile ( p >> 0.05 ; Student’s t-test).

Figure 10.   Reliability of brain recordings. The bar graphs show the mean classification accuracy with standard 
deviation (Y axis) for nine classifiers (X axis) that are trained on an increasing number of brain volume 
repetitions. The dotted line denotes chance level.
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entanglement where manipulating one particular feature in latent space affects other features as well23. For 
instance, editing a latent vector to make the generated face wear eyeglasses simultaneously tends to make the 
face look older because of such biases in the training data. Feature entanglement obstructs the generator to map 
unfamiliar latent elements to their respective visual features. It is easy to foresee potential complications for 
reconstructing images of real faces.

A modified version of PGGAN, called StyleGAN19,25, is designed to overcome the feature entanglement prob-
lem. StyleGAN maps the entangled latent vector to an additional intermediate latent space (thereby reducing 
feature entanglement) which is then integrated into the generator network using adaptive instance normalization. 
This results in superior control over the features in the reconstructed images and possibly the generator’s ability 
to reconstruct unfamiliar features. The generated face photographs by StyleGAN have improved considerably in 
quality and variation in comparison to PGGAN. Replacing PGGAN with StyleGAN would therefore be a logical 
next step for studies concerned with the neural decoding of faces.

Finally, this study used a dataset with many trials but from a small number of participants as was the case in 
earlier similar studies8,10–14,26,27. Our goal was to investigate how well GANs can be used to reconstruct perceived 
stimuli from fMRI measurements of individual participants. As such, all analyses were performed separately for 
individual participants. Our results demonstrated that our framework can indeed be successfully used to create 
hyperrealistic reconstructions of perceived faces for these participants. However, it should be noted that a larger 
group study would be required to generalize our conclusions to the whole population.

Future applications.  The field of neural decoding has been gaining more and more traction in recent years 
as advanced computational methods became increasingly available for application on neural data. This is a very 
welcome development in both neuroscience and neurotechnology since reading neural information will not 
only help understand and explain human brain function but also find applications in brain computer interfaces 
and neuroprosthetics to help people with disabilities. For example, extensions of this framework to imagery 
could make it a preferred means for communication with locked-in patients.

Conclusion
We have presented a novel experimental framework together with a model for HYperrealistic reconstruction of 
PERception (HYPER) by neural decoding of brain responses via the GAN latent space, leading to unparalleled 
stimulus reconstructions. Considering the speed of progress in the field of generative modeling, we believe 
that this framework will likely result in even more impressive reconstructions of perception and possibly even 
imagery in the near future.
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