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Population codes of prior 
knowledge learned 
through environmental regularities
Silvan C. Quax1*, Sander E. Bosch1,2, Marius V. Peelen1 & Marcel A. J. van Gerven1

How the brain makes correct inferences about its environment based on noisy and ambiguous 
observations is one of the fundamental questions in Neuroscience. Prior knowledge about the 
probability with which certain events occur in the environment plays an important role in this 
process. Humans are able to incorporate such prior knowledge in an efficient, Bayes optimal, way 
in many situations, but it remains an open question how the brain acquires and represents this prior 
knowledge. The long time spans over which prior knowledge is acquired make it a challenging question 
to investigate experimentally. In order to guide future experiments with clear empirical predictions, 
we used a neural network model to learn two commonly used tasks in the experimental literature (i.e. 
orientation classification and orientation estimation) where the prior probability of observing a certain 
stimulus is manipulated. We show that a population of neurons learns to correctly represent and 
incorporate prior knowledge, by only receiving feedback about the accuracy of their inference from 
trial-to-trial and without any probabilistic feedback. We identify different factors that can influence 
the neural responses to unexpected or expected stimuli, and find a novel mechanism that changes 
the activation threshold of neurons, depending on the prior probability of the encoded stimulus. In 
a task where estimating the exact stimulus value is important, more likely stimuli also led to denser 
tuning curve distributions and narrower tuning curves, allocating computational resources such that 
information processing is enhanced for more likely stimuli. These results can explain several different 
experimental findings, clarify why some contradicting observations concerning the neural responses 
to expected versus unexpected stimuli have been reported and pose some clear and testable 
predictions about the neural representation of prior knowledge that can guide future experiments.

During perception, the brain is continually trying to infer the cause of the perceptual input that reaches the 
senses. Efficient neural machinery is required to successfully perform this inference given the noise and ambigu-
ity in our observations. Prior knowledge about the occurrence of stimuli in our environment can help to make 
better perceptual decisions about these noisy and ambiguous observations. The influence of prior knowledge on 
the perceptual decisions made by humans and animals has been demonstrated in many situations.

For example, the fact that light almost always comes from above, influences our perception of ambiguous 
shapes1,2 and our prior knowledge of shadows causes equally bright surfaces to appear of different brightness3. 
Similarly, the perception of oriented bars shows a bias towards the cardinal axis, the so called ‘oblique’ effect, 
which has been successfully explained by an optimal environmental prior which accounts for the frequency with 
which certain orientations occur in the natural environment4. Furthermore, owls systematically underestimate 
the direction of sound sources occurring far away from the center of their gaze, which has been explained as a 
bias induced by a prior that emphasizes directions near the center of gaze5.

The prior knowledge that is used in such perceptual decision making should somehow match the environmen-
tal statistics in order to enable optimal inference. How the brain learns to represent such prior knowledge and 
incorporate it in its sensory processing, is still an open question. While one possibility is that prior knowledge 
is transferred through evolutionary means, this would lead to very inflexible priors, not optimally adapted to 
changing environments. Alternatively, the brain learns to represent prior probabilities about the environment 
during its lifetime through the frequency with which an object is observed over time3.

Different ideas exist about the representation of prior probabilities in the brain. One popular theory is that 
uncertainty about a variable is represented together with the variable itself, by the population activity of Poisson 
neurons6. Alternatively, the variability and the mean of neural responses can be representing separate aspects of 
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a posterior probability distribution, such that the uncertainty encoded by the variability of neural firing is not 
represented in the mean responses of the neurons7. This way, prior knowledge can already be represented in the 
neural variability without sensory input8. Another theory is that specialized neurons encode prior probabilities 
and sensory evidence9.

It has also been suggested that prior knowledge is represented in the specific distribution of tuning curves in 
the brain10, where neurons are more sensitive for stimuli that have a higher prior probability. Various evidence 
exists in favour of these different implementations and different representations might occur in different brain 
areas or for different types of stimuli.

To gain more insight in the kind of representations of prior knowledge that could emerge in neural popula-
tions, we trained generic neural networks to perform two commonly-used tasks in the experimental literature. 
These networks can provide valuable insight into possible representations in neural populations. While it has 
been shown that generic neural networks can learn to perform probabilistic tasks that depend only on the cur-
rent input, without a need to incorporate prior knowledge11, it remains an open question to what extent these 
networks can learn to represent a statistically optimal prior and combine this with probabilistic input.

Here, we simulated a classification task and a stimulus estimation task, where the prior probability of observ-
ing a stimulus was manipulated. Both tasks use a fundamentally different prior; a discrete prior for the different 
classes in the classification task and a continuous prior for the stimulus estimation task. We show that a model 
population of neurons learns to correctly represent and incorporate prior knowledge in both, by only receiving 
feedback about the accuracy of their inferences and without probabilistic feedback. We find an opposing effect of 
prior and input uncertainty on the sparseness of neural firing. In the classification task, prior knowledge lowers 
the activation thresholds for the more likely class, causing neurons to fire more easily. In the continuous task, 
a sharper prior leads to a shift and narrowing of tuning curves, as often observed in experimental data. These 
results lead to testable predictions that can help validate whether prior knowledge is represented similarly in 
humans and animals.

Methods
Neural population model.  Our neural population model has a feedforward architecture consisting of an 
input layer, a hidden layer and an output layer (Fig. 1). The input layer consists of a group of 50 independent 
Poisson neurons that respond to a stimulus, s, with firing rates, r = [r1, ..., rN ] , each generated from its own inde-
pendent Poisson distribution11. The probability that neuron i responds with firing rate ri is given by

where the rate parameter �i is determined by Gaussian tuning curves fi(s) , specific for each input neuron, scaled 
with a global contrast parameter c, i.e. �i = cfi(s) . The Gaussian input tuning curves for each neuron are thus 
given by

where the maxima of the tuning curves, φ = [φ1, . . . ,φN ] , were uniformly distributed over a range of −20 to 20 
and the width of every tuning curve was given by σ 2 = 10 . The contrast parameter, c, determined the quality 
of the stimuli. The range of contrasts used depended on the task and is specified in the task descriptions below.

The hidden layer was densely connected to the input layer with weights, W , and consisted of, K = 200 , recti-
fied linear units (ReLUs) with bias parameters bk and firing rates h = [h1, . . . , hK ]

for 1 ≤ k ≤ K.
The output layer of the network was densely connected to the hidden layer via output weights, U , and con-

sisted either of two units, one for every class, in the classification task (Fig. 1A), or a single unit, in the stimulus 
estimation task (Fig. 1D). A softmax function was applied to the output units of the classification task to convert 
them to probabilities.

In some experiments a cue was added to indicate which class was more likely to occur on a certain trial. Two 
important ways in which a cue can modulate a neural population to represent prior knowledge are through gain 
modulations or biases. To enable the network to potentially learn such representations, we equipped every ReLU 
unit with both a gain parameter, gkcue , and an extra bias parameter, bkcue , per unit, that could be modulated by the 
cue.These extra parameters were also learned via the backpropagation algorithm. That is,

for 1 ≤ k ≤ K.

Network training.  All simulations were performed in Python 3.7. To train our neural networks we used 
the PyTorch neural network library, version 1.7.012. Parameters were initialized from a uniform distribution 
in U(−√

1/Nin,
√
1/Nin) , with Nin the number of inputs into a layer. Thus for W and b , Nin = 50 and for U , 

Nin = 200 . In the experiments where a cue was added both gcue and bcue were initialized the same way with 
Nin = 50.
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The networks were trained using the backpropagation algorithm. To optimize the network parameters, W , 
b , U and in case of the cue experiments gcue , bcue , we used Adam13, with a learning rate of 2× 10−4 . We used 
a minibatch size of 10 per iteration. Every network was trained for 100 epochs with 1000 iterations per epoch. 
Stimuli were presented in a random order during training. Results are shown for a single trained network for 
each task. No qualitative differences were observed between multiple trained networks on the same task.

In our analysis we used the absolute value of the weight changes from input to hidden layer as a measure to 
quantify the effect of that a stimulus with a certain prior probability had on the parameters.

Classification task.  To study the representations of prior knowledge emerging in a population of neurons, 
we designed a classification task. Stimuli could be drawn either from class 1 or class 2. The relative frequency 
with which a stimulus was drawn from a class determined the prior probability with which stimuli from this 
class occurred. The stimulus was converted to firing rates by a population of Poisson neurons, which in turn 
served as the input to a population of hidden rate-based neurons, which was read out by a linear layer.

In this classification task, the network had to decide whether observed stimuli, s, belonged either to the 
first class ( C = 1 ) or the second class ( C = 2 ). Both classes were determined by a one-dimensional Gaussian 
distribution with the same variance, σ 2

1 = σ 2
2 = 25 , but different means, with µ1 = −5 and µ2 = 5 (Fig. 1B,C). 

Stimuli with contrast values c ∈ {0.5, 1.2, 1.9, 2.6, 3.3, 4.0} were presented. We used five different priors over the 
two classes chosen from π ∈ {0.25, 0.33, 0.5, 0.67, 0.75} such that p(C = 1) = 1− p(C = 2) = π . Because of 
the symmetry of the binary classification problem these five different priors made up three independent ratios. 
However, in order to ensure that no intrinsic bias exists in our network all five options are investigated in the 
results section. The prior probabilities for the two classes determined the frequency with which samples from 
these classes were shown during training.

Figure 1.   Neural population model and task overview. Two different tasks were studied, a classification task 
(top row) and a stimulus estimation task (bottom row). The neural network for the classification task and 
estimation task had a similar input and hidden layer, only the output layer differed. (A) Two softmax outputs 
(one for each class) indicated the probability that the stimulus observed came from the respective class in the 
classification task. (B) The stimuli from each class came from a normal distribution with a mean and variance 
specific to that class. Different prior probabilities for the classes were tested as represented by the bars. (C) The 
generative model used to generate a stimulus from a selected class and subsequently generate firing rates for 
the input Poisson neurons. (D) A single output indicated the estimated stimulus value in the estimation task. 
(E) The stimuli presented to the network were drawn from a normally distributed prior. Priors with different 
variances were tested: σ 2

s ∈ {100, 50, 25, 10, 5} (indicated by gray scale, from left to right). (F) The generative 
model for the estimation task, used to generate firing rates for the input Poisson neurons from a generated 
stimulus.
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In the network solving the classification task, the output of the read-out layer was converted by a softmax 
function to obtain a normalized probability. For class i the probability is given by

with yi the read-out for class i and the sum representing the sum over all classes (two in this case). The loss per 
trial is then calculated using this softmax read-out and the binary class label of the stimulus with the binary 
cross entropy

with the target label, t, being 1 when the class is 1 and being 0 when the class is 2.
To observe how optimal our network performed this task we compared the posterior learned by the net-

work (the softmax read-out) with the optimal Bayesian posterior probability. We determined these posterior 
probabilities for both classes. We wish to estimate the posterior probability of a class C given observations of 
neuronal responses r:

where the likelihood is given by:

In our task we draw the stimulus from a normal distribution depending on the class:

The conditional probability of neuronal responses r of the Poisson neurons can be written in the following form:

where we dropped the parts that are independent of s and assumed that 
∑

i −�i(s) is constant and thus also 
independent of s.

If we let the tuning functions take a Gaussian form this results in

with µr = φTr(1Tr)−1 and σ 2
r = σ 2(1Tr)−1.

Since both parts of the likelihood are normally distributed we can marginalize the likelihood to arrive at the 
following form

The log posterior ratio of the probability that an observation is of one of both classes is given by

For our task substituting in Eq. (12) in Eq. (13) drops out the normalization term and gives
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where µc is the mean response of class c and Nc is the number of training samples that have been shown for class c.
The posterior probability for class 1 can then be determined by

Estimation task.  In the estimation task, the network had to estimate the continuous value of the observed 
stimulus s. Stimuli were drawn from a Gaussian prior distribution with mean µs = 0 and variance σ 2

s  (Fig. 1E,F)

Priors with different variances were tested: σ 2
s ∈ {100, 50, 25, 10, 5} . Stimuli with contrast values 

c ∈ {0.30, 0.72, 1.45, 2.26, 2.86, 3.2} were presented.
The network solving this task had the same basic architecture as for the classification task. Only the readout 

was in this case not converted by a softmax function, but directly reflected an estimate of the stimulus value. 
The mean squared error loss between the estimated stimulus value, ŝ , and actual stimulus value was used to 
optimize the network for this task

To determine the optimal Bayesian estimate, we would like to estimate the most probable stimulus value s, given 
observations of neuronal responses r

The response to a certain stimulus value is again given by Poisson neurons (Eq 10-11). The posterior will then be 
proportional to the product of two normal distributions, which will again be normally distributed

The posterior mean is given by the maximum-a-posteriori (MAP) estimate, which is used as optimal Bayesian 
estimate of the underlying stimulus value and compared against the stimulus estimate given by the network

Results
To study the representations of prior knowledge emerging in a population of neurons, we designed two repre-
sentative tasks with a distinctive type of prior covering many behavioral experiments. In the first task the network 
had to decide to which of two classes a stimulus belonged. A discrete prior determined the prior probability of 
observing a stimulus from one of these two classes. In the second task the network had to estimate the value of 
a stimulus. Here a continuous prior determined the prior probability of observing a certain stimulus value (see 
Methods section for further details on the different tasks). Since the prior affects the optimal outputs in both tasks 
differently, there could be distinctive representations emerging, making both example tasks worth investigating. 
In the first part of the results we investigate the classification task, while the latter part of the results focuses on 
the estimation task.

Optimal prior learned on trial‑by‑trial basis.  To investigate whether the network was able to learn a 
prior about the occurrence of the different classes and incorporate this optimally, we compared a linear softmax 
readout of the network with an optimal Bayesian solution of the task (Fig. 2).

While the network did not receive any probabilistic feedback about the prior probabilities of either class, it 
formed a correct hidden representation of these prior probabilities and adjusted its choices in a Bayes-optimal 
way. If the network would only perform a maximum likelihood estimation (i.e. use a uniform prior), the network 
posterior would have matched the dashed line (see Fig. 2). The result did not depend on the specific learning rate 
or network size and holds also when optimizing for a mean-squared-error loss function (Fig. S1) and for different 
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activation functions (Leaky-ReLU and Sigmoid, Fig. S2,3 respectively), although the task was harder to learn with 
a Sigmoid activation function. This result suggests that no higher order cognitive functions that keep track of 
the relative frequency by which an object class is observed are needed to form a Bayes optimal prior in the brain.

The accuracy of the classifications (as quantified by the fraction of correctly classified labels) was calculated 
by comparing the class label with the highest probability according to the read-out softmax of the network with 
the real class label (Fig. 3). The use of this prior knowledge led to more accurate responses the class with higher 
prior probability, a behaviour that humans have also shown in many studies4,14.

Representations of prior probability.  To investigate how the neural population encoded the prior prob-
ability of the different classes, we first looked at the neural activation in response to different stimuli. Both 
uncertainty in the input neurons and in the prior probability of the different classes were manipulated. Less 
uncertainty in the input due to higher contrast led on average to sparser population responses (Fig. S4), as previ-
ously reported by11. At first glance, these results seem to provide evidence for a sparsity based code where more 
likely stimuli are encoded sparser to save energy. However, when the posterior uncertainty is considered, we 
observed that for high contrast stimuli more certainty about the presented class led to stronger responses, where 
more neurons fire. Uncertainty in the input due to contrast, only strongly changes responses to stimuli that lead 
to uncertain posterior responses (around 0.5).

These responses could be explained by a template matching code, where the neural population develops 
templates for both classes against which the input is matched. Very certain inputs led to clear matches with either 
of the classes, or a clear mismatch when a stimulus came from the decision boundary. On the other hand, more 
noisy inputs led to partial matches with many templates, even for stimuli around the decision boundary. We 
calculated the degree to which the template of every neuron was matched using the dot product between input 
and neuron weights, corrected for the activation threshold. Figure S5 shows a histogram of these ’pre-activation’ 
neural activities for the different contrast values. This supports the idea that low contrast stimuli lead to partial 

Figure 2.   Network posterior matches optimal Bayesian estimates. The neural network learned to choose each 
class with a certain probability by getting feedback about correct or incorrect classification. Based on Bayesian 
statistics the optimal posterior estimate depends on the prior probability of a class occurring. This prior 
probability was influenced by the relative frequency that a stimulus from a class was shown during training. Five 
prior probability ratios were tested: [0.25, 0.75], [0.33, 0.67], [0.5, 0.5], [0.67, 0.33] and [0.75, 0.25] for class 1 and 
class 2 respectively. The posterior that the network learned is plotted against the optimal Bayesian estimates that 
accounts for the prior (solid line), or that ignores the prior probability, i.e. a uniform prior (dashed line). The 
network posterior matches the optimal Bayesian estimate that accounts for the prior and thus learns to correctly 
incorporate prior knowledge in its connections. Error bars represent standard deviation over the validation 
trials.

Figure 3.   Prior enhances accuracy for more likely class. The accuracy with which stimuli were correctly 
classified was influenced by the prior probability of a certain class. A uniform prior (panel 3) led to equal 
accuracy on stimuli from both classes. A network trained on more stimuli from class 2 than class 1 (panel 1 and 
2) showed higher accuracy on class 2 stimuli, but lower accuracy on class 1 stimuli, compared to the uniform 
prior. On the other hand a network trained on more stimuli from class 1 than class 2 (panel 4 and 5) showed 
higher accuracy on class 1 stimuli, but lower accuracy on class 2 stimuli, compared to the uniform prior. 
(Dashed line represents accuracy of optimal Bayesian model.
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matches with many templates, while high contrast stimuli lead to clearer matches or mismatches as can be seen 
by the stronger positive and negative ’pre-activations’.

Next, we considered the effect of uncertainty in the prior probability of the classes. A higher prior probability 
for a certain class led to more neurons firing in response to stimuli of this class. Uncertainty in the input and 
uncertainty in the prior thus have opposing effects on the sparseness of the neural responses. While a higher 
contrast in the input (less uncertainty) led to sparser neural responses, a higher prior probability for a class (also 
less uncertainty) led to less sparse neural responses for this class (Fig. 4B). The average firing rate for the entire 
neural population increased both with more certainty in the input, as well as with more certainty in the prior 
(Fig. 4C). The learning signal on the other hand, calculated as the absolute change in the weights, was lower for 
more likely stimuli (Fig. 4D).

Prior probability encoded by changing activation thresholds.  The neural responses of the popula-
tion offer measurable predictions that can be experimentally validated. A more difficult, but nonetheless inter-
esting, question to answer experimentally is which mechanism gives rise to these neural responses. Changes in 
the properties of individual neurons and wiring between neurons in the population should somehow represent 
the prior probability of diverse stimuli.

To see how the parameters in our network encoded this prior information we determined for every neuron 
in the population whether it contributed more to class 1 or class 2. We analyzed how the weights of input to 
hidden units, W , the bias of the hidden units, b , and the weights from hidden to output units, U , changed with 
different prior probabilities for a class. The neurons in the population responsive to the class with higher prior 
probability developed on average a higher bias, effectively lowering their activation threshold (Fig. 5A). Lower 
thresholds explain the fact that more neurons fire when a class has higher prior probability. We observed no 
effects of the prior probability on the mean of the input-to-hidden weights of the neurons (Fig. 5B). As a control 
we also checked for the readout weights of the neural population, but found no effect of the prior probability on 
the mean of the readout weights to either class (Fig. 5C).

Again, these results did not depend on the specific learning rate or network size and holds also when opti-
mizing for a mean-squared-error loss function (Fig. S6) and for different activation functions (Leaky-ReLU and 
Sigmoid, Fig. S7,8 respectively), demonstrating the robustness of the mechanism.

Prior probabilities indicated by contextual cues.  In our everyday environment the prior probability 
of a stimulus occurring often depends strongly on the context. Since in these situations the context has to be able 
to manipulate the prior on a very short time scale, it is not possible that long term synaptic changes underlie 

Figure 4.   Neural activity changes due to input and prior uncertainty. (A) Number of neurons with non-zero 
activity in response to both stimuli from class 1 and class 2. Fewer neurons in the hidden layer responded when 
the input contrast was higher. On the other hand, more neurons responded when the posterior was certain 
which class was presented. (B) Number of neurons with non-zero activity in response to stimuli from class 1. 
While fewer neurons responded to higher contrast stimuli, more neurons were active when the prior probability 
of the presented stimulus class was higher. (C) The average activity of the population, in response to stimuli 
from class 1, increased both with stimulus contrast and prior probability. (D) The weights in the network require 
less adaptation in response to likely stimuli, while the contrast has no influence on the strength of the weight 
updates.
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such representations. Different hypotheses exist about the neural mechanisms underlying the encoding of prior 
knowledge dynamically in such cases. A popular hypothesis is that prior knowledge is encoded by modulat-
ing the gain of neurons. Neurons encoding for a more probable stimulus fire more strongly in response to this 
stimulus. Another possibility is that prior knowledge modulates the activation threshold of neurons. A neuron 
encoding a more probable stimulus is then more easily activated in response to this stimulus. In biological net-
works, a lower activation threshold can be achieved by excitatory modulation, while a higher activation thresh-
old is achieved by inhibitory modulation, either of the shunting or hyperpolarizing type15,16. Gain modulation 
on the other hand requires an additional background noise input that is a combination of coupled excitatory 
and inhibitory input16. Both these mechanisms have been widely observed in the brain17,18 and could play an 
important role in representing prior knowledge.

To see if our network is able to learn such a prior that has to change flexibly depending on the context, we 
added an extra cue input feeding into the hidden layer, with connections to both the gain and bias of the neu-
rons. A single neural network was trained that had to learn to change its prior probabilities depending on the 
cue. Given the cue the probability of observing a stimulus from class 1 was either 25% or 75% (vice versa for 
class 2). The network was able to learn to correctly account for the prior probabilities for the different context 
cues (Fig. 6A,B).

The neural activity of the network trained with contextual cues showed similar, but slightly weaker, effects 
as for the fixed priors (Fig. S9).

Since all network parameters are the same for both cue conditions, the network had to learn a flexible mecha-
nism to account for the prior probability. Closer inspection of the effect of the cue on the hidden neuron input 
shows that the hidden neurons encoding the more likely class received both a stronger baseline input from the 
cue (Fig. 6C) and had a stronger gain (Fig. 6D).

Since both the bias and the gain are influenced by the cue, we investigated whether one of these played a 
more important role in representing the correct prior knowledge. We analyzed the accuracy of the network on 
classifying both classes under the different cues. When the cue influenced both the gain and the bias, the prior 
caused a large difference in accuracy between both classes (Fig. 7, blue bars). Next we turned off either the influ-
ence of the cue on the gain (Fig. 7, orange bars) or the influence of the cue on the bias 7, green bars). Turning off 
the influence of the cue on the gain diminished the effect of the prior on the accuracy only slightly. Turning of 
the influence of the cue on the bias on the other hand, diminished the effect of the prior on the accuracy almost 
completely. The bias thus seems to play a greater role in representing the prior knowledge.

Prior probability encoded by efficient allocation of neural resources.  In the previous section we 
studied how prior knowledge about a discrete class can be learned and encoded in a neural population. How-
ever, many tasks in the brain require a prior representation of a continuous environmental variable. E.g., an 
often used example in the experimental literature is the estimation of the orientation of gratings4, but also sound 
localization has been explained this way5. Since the effect of such a continuous prior on the Bayesian posterior is 
mathematically more complex, this might also require a different neural representation. To study whether such 
a continuous prior can also be successfully learned on a trial-by-trial basis and whether the representations dif-
fer from the discrete case, we trained our neural population to estimate the value of a noisy stimulus. Different 
Gaussian priors, N (µ = 0, σ 2 ∈ {100, 50, 25, 10, 5}) , were tested, where the probability that a certain stimulus 
value was presented to the network was determined by this prior distribution. The same neural population 

Figure 5.   Prior probability encoded by changing activation thresholds. The hidden units could change the 
decisions of the output units using the bias parameters ( b ), hidden weights ( W ) or output weights ( U ). For 
every hidden neuron, it was determined whether it contributed stronger to class 1 or class 2 by comparing 
the output weights to class 1, U(C = 1) , against the output weights to class 2, U(C = 2) . That resulted in two 
subpopulations of hidden units: H1 = H[U(C = 1) > U(C = 2)] and H2 = H[U(C = 1) < U(C = 2)] . The 
biases and weights of the hidden units were averaged accordingly and are plotted for different prior probability 
ratios ( P(C = 1) ∈ [0.25, 0.33, 0.5, 0.67, 0.75] ). (A) Only the biases of the hidden neurons changed as a result 
of different prior probabilities, where a higher probability of a class led to higher bias values in neurons coding 
for this class, thus lowering the activation threshold in these neurons. (B) The hidden weights did not change 
with prior probability. (C) Neither did the output weights. Error bars represent standard error over the units. (* 
0.001 < p < 0.01 , ** p < 0.001).
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model with Poisson input neurons and ReLU hidden units as for the discrete case was used. Instead of a softmax 
output layer, we used a linear readout for the continuous case. The mean squared error loss was used to optimize 
the parameters of the network through backpropagation.

First we compare the performance of the model again with the Bayesian optimal posterior, to test whether 
it shows Bayesian optimal behaviour. The neural population learned to estimate the stimulus in a Bayesian way, 
correctly incorporating the prior knowledge about the relative frequency with which a stimulus was presented 
(Fig. 8). A uniform prior or maximum likelihood estimate did not match the network output for priors differ-
entiating strongly from uniform (Fig. 8, right panel).

Figure 6.   Contextual cue modifies activation thresholds. The frequency with which each class of stimuli was 
shown depended on a contextual cue. Depending on the cue the prior probability of class 1 and class 2 could 
either be [0.25, 0.75] or [0.75, 0.25]. (A,B) The network learned to adapt its output probability to reflect the 
optimal Bayesian estimate given the cue. Error bars represent standard deviation over the validation trials. (C,D) 
For every hidden neuron, it was determined whether it contributed stronger to class 1 or class 2. The input from 
the cue to the bias and gain of the hidden neurons was averaged accordingly for both both cues. The cue for the 
context where class 2 is more likely caused both a higher input to the bias and gain of hidden neurons encoding 
class 2 and a lower input to the hidden neurons encoding class 1. The opposite effect occurred for the cue for the 
context where class 1 is more likely. Error bars represent standard error over the units. (* 10−10 < p < 10−7 , ** 
p < 10−10).

Figure 7.   Cue influence mainly through bias. The accuracy for both classes was determined for the cued priors 
(A: [0.25, 0.75] and B: [0.75,0.25]). (A,B) The class with the highest prior probability according to the cue, 
was decoded much more accurately when the cue influenced both the gain and the bias (blue bars), closely 
resembling the accuracy of the optimal Bayesian model (dashed line). Turning off the cue effect on the gain 
diminished this effect only slightly (orange bars). Turning off the cue effect on the bias diminished this effect 
much more, almost completely removing any effect of the cued prior (green bars), making the accuracy more 
similar to the accuracy of a Bayesian model that only accounts for the likelihood (solid line).
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The network showed a ‘perceptual’ bias similarly to those that are observed in humans and animals (Fig. 9)5. 

The size of this bias depended on the sharpness of the prior distribution, with a sharper prior having a more 
pronounced bias. The bias in the network estimates matched those predicted by the optimal Bayesian estimate.

One of the effects that is often observed in humans and animals is that the limited neural resources that are 
available to the organism, are used efficiently, such that more resources are allocated to ranges of stimuli that 
occur more often4,5. This improves performance for stimuli in these ranges, while consequently decreasing 
performance for stimuli that do not occur often. Our network showed a similar performance pattern, where 
stimuli around the maximum prior probability were most accurately estimated, while those further away from 
the maximum had a larger estimation error (Fig. S10).

The neural activation patterns show a different influence of the prior for the estimation task. While a higher 
prior probability caused an increase in the number of neurons that fire and the overall activity in the neural 
population (Fig. 4), we see the opposite effect in the estimation task (Fig. 10A,B). Responses become sparser 
when the prior distribution is more narrow (Fig. 10A). The effect of the stimulus contrast remains the same as for 
the classification task, with sparser responses on stimuli with higher contrast. The average activity in the neural 
population decreases when the prior distribution is more narrow (Fig. 10B). The effect of the stimulus contrast 
on the average activity also remains the same, with higher activity in the neural population for higher stimulus 
contrast. For the lowest contrast value the average activity increases slightly again.

To understand what the underlying representations are that encode this prior, we investigated the tuning 
curve properties of the hidden neurons. These tuning curves could change their properties such that more likely 
stimuli get allocated more of the limited resources. One popular hypothesis based on Gaussian tuning curves 
is that the density of the peaks of the tuning curves correlates with the prior probability of a stimulus, such that 
the highest density of tuning curves is at the stimulus value with the highest prior probability4. We plotted a 
histogram of the tuning curve peaks to see whether the highest density is found around the maximum of the 
prior distribution. We found a bimodal distribution where the highest density of tuning curve peaks is found 
slightly away from the maximum prior probability (Fig. 11).

One possible explanation is that the neural population learns to allocate the most sensitive parts of the tuning 
curves to the most probable stimuli range. This is part of the tuning curve where the slope is steepest, leading to 
the highest Fisher information. To test this alternative, we determined the slopes of the tuning curves by taking 
the second order derivative of the tuning curves and calculating the maximum of this slope. The histogram of 

Figure 8.   Network learns to incorporate prior knowledge optimally. Stimuli were drawn from Gaussian 
priors with different variances (i.e. σ 2

p ∈ 100, 50, 25, 10, 5 ). During testing, stimuli in the range [−10, 10] 
were presented, making the σ 2

p = 100 prior effectively uniform. The posterior that the network learned is 
plotted against the optimal Bayesian estimates that accounts for the prior (solid line), or that ignores the prior 
probability, i.e. a uniform prior (dashed line). While for σ 2

p = 100 both Bayesian estimates are similar in the 
range [−10, 10] , there is a big difference between both estimates for σ 2

p = 5 . The network estimates match the 
Bayesian estimates accounting for the prior distribution, but not Bayesian estimates for the prior distribution. 
The network thus learns to incorporate the prior knowledge correctly. Error bars represent standard deviation 
over the validation trials.

Figure 9.   Learned prior causes perceptual bias that is statistically optimal. The network biased its estimates of 
the stimulus towards the mean of the prior (solid line). This effect was strongest for the sharpest prior ( σ 2

p = 5 ). 
This perceptual bias matched the bias predicted by an optimal Bayesian observer (dashed line, note overlap with 
solid line). Error bars represent standard deviation over the validation trials.
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these maximal slope distributions closely matches the underlying prior probability, indicating that the neural 
population indeed optimizes its tuning curves according to this criterion (Fig. 12).

Besides shifting tuning curves to position their maximal slope around more likely stimuli values, the tuning 
curves themselves can be made sharper in order to get more accurate responses around more likely stimuli val-
ues. We measured the width of the tuning curves as the full-width-at-half-maximum. The distribution of tuning 
curve widths shows a clear narrowing of the tuning curves for the prior distribution with the lowest variance 
(Fig. 13), which has also been reported by theoretical derivations of the optimal tuning curve distributions for 
a certain prior distribution over sensory variables10,19. Narrower tuning curves for more likely stimuli can result 
in the sparser activations observed in Fig. 10A.

To investigate whether the biases in the neural population also play a role in encoding prior information we 
divided the neurons into a group encoding more likely, or ‘expected’, stimuli and more unlikely, or ‘unexpected’ 
stimuli. Looking at the results from Fig. 12, we selected the neurons with their maximal slope within one standard 

Figure 10.   Neural activity changes due to prior uncertainty. (A) Number of neurons with non-zero activity in 
response to stimuli from different prior distributions. Fewer neurons fired when the prior distribution was more 
narrow. (B) The average activity of the population decreased with a more narrow prior probability distribution. 
While higher contrast led to increased neural activity. For the lowest contrast value the activity in the network 
also rises again.

Figure 11.   Density of tuning curves does not follow prior probability. A histogram of the peaks of all hidden 
neuron tuning curves is shown for the different prior conditions. While the distribution of tuning curve 
peaks becomes denser for the sharper prior (right panel), there is not a direct match with the Gaussian prior 
probability density. The tuning curve peaks rather concentrate around the flanks of the prior probability 
distribution.

Figure 12.   The slope of the tuning curves follow the prior distribution. A histogram of the location of the 
maximal slope (region most sensitive to stimulus changes) of every tuning curve is plotted for the different prior 
distributions. The density of maximal slopes concentrates more for the sharper prior probability distribution 
(right panel), forming a Gaussian bell shape.
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deviation of the prior probability distribution as those sensitive to ‘expected’ stimulus values and neurons with 
their maximal slope outside one standard deviation of the prior probability distribution as those sensitive to 
‘unexpected’ stimulus values. The neurons sensitive to ‘expected’ stimuli had a stronger bias, or baseline activa-
tion, than neurons sensitive to ‘unexpected’ stimuli for all different prior distributions (Fig. 14).

Discussion
Summary of results.  We have shown that a neural population is able to learn to incorporate prior knowl-
edge optimally by error based learning without any probabilistic information, both for discrete priors (classifica-
tion task) and continuous priors (stimulus estimation task). For both discrete and continuous priors, errors for 
likely stimuli are lower than errors for unlikely stimuli, as often observed in empirical literature. However, the 
mechanism through which this is achieved differs for both types of priors. In the classification task, a higher 
prior probability for a class led to higher activity in neurons encoding this class. On the other hand, stimuli 
with higher input contrast led to lower activity in the network. The increase in neural activity by the prior was 
caused by a lowered activation threshold of the neurons encoding the more likely class. When a contextual cue 
was added, a similar effect was achieved by a strong excitatory input to neurons encoding the more likely class 
and an inhibitory input to the neurons encoding the less likely class. In the stimulus estimation task the opposite 
effect of prior probability on the neural activity was observed. A narrower prior distribution led to lower activ-
ity in the neural population. The prior changed the distribution of tuning curves, increasing the density and 
narrowing the tuning curves. Not the peak of the tuning curves, but the maximal slope followed the prior dis-
tribution. Neurons with their maximal slopes around ‘expected’ stimuli values had a lower activation threshold 
than neurons with their maximal slope around ‘unexpected’ stimuli values. Thus the effects of prior probability 
on neural activations are affected by a range of different factors, like lower activation thresholds, higher tuning 
curve density or narrower tuning curve width, which can play a different role depending on the exact task that 
is being performed.

Relation to previous work.  These results give a strong indication that it is possible to learn an efficient 
incorporation of prior knowledge based on errors in individual observations, and without the need of higher 
cognitive regions keeping track of explicit probabilities. With this study we extend previous findings of11 to 
incorporate prior knowledge and show that even such unbalanced class observations lead to optimal Bayesian 
inference. We suggest a mechanism that uses changes in the activation thresholds to encode prior probabili-
ties. Such changes of intrinsic neural properties have been proposed previously as an efficient mechanism to 
achieve sparse responses to stimuli20 and maximize information transmission. Interestingly, we find a similar 
mechanism to encode prior probabilities of stimuli optimally. Previous models describing the representations of 
uncertainty in the brain, have strongly focused on the role of spiking behaviour. The variability caused by such 
spiking behaviour could be connected to the mean firing rate of a neuron (in case of Poisson like neurons) where 

Figure 13.   Tuning curves become narrower for sharper prior. A histogram of the full-width-at-half-maximum 
for all tuning curves is shown. For a sharper prior (right panel) tuning curves became narrower, effectively 
increasing the slopes of the tuning curves and thus the discriminability of different stimuli.

Figure 14.   Bias influence by prior probability of stimuli. For every trained network we determined which 
neurons were sensitive to ‘expected’ stimuli and which were sensitive to ‘unexpected’ stimuli. The bias was 
much stronger for neurons sensitive to expected stimuli for all prior probability distributions. (* p < 0.02 , ** 
p < 0.005).
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both encode the uncertainty of a stimulus6. Alternatively, the variability and the mean of neural responses can 
be representing separate aspects of a posterior probability distribution, with only the variability of neural firing 
representing uncertainty7. Our work shows that rate based models are also able to perform such probabilistic 
tasks requiring knowledge about prior distributions, shedding light on a completely different way of representing 
prior knowledge.

The learning through observations demonstrated by our network is supported by experimental studies show-
ing the formation of an environmental prior over the lifetime8,21 and could potentially be how humans and 
animals learn to from optimal Bayesian priors5,22,23.

The representations of prior knowledge have been empirically studied in various settings. Conflicting obser-
vations reporting either increasing or decreasing neural responses to expected or unexpected stimuli have been 
found14,24–30. Here we showed that different factors can influence such neural responses, often indistinguishable 
from purely the average neural activity in a population. In the classification task, our model predicts stronger 
activity in response to expected stimuli, which has been observed in multiple studies24,25,27. However, in the esti-
mation task, our model predicts lower activity in response to expected stimuli in line with experiments showing 
lower blood-oxygen-level-dependent (BOLD) responses in humans14,28 and electrophysiological responses in 
non-human primates29,30 to expected stimuli. Besides the particular task that is being performed, differences 
in neural activations in response to expected or unexpected stimuli can also result from the particular neurons 
that are measured during experiments. More detailed experimental measurements revealed that responses are 
higher in neurons selective to expected stimuli versus those not selective to expected stimuli14,25, similar to our 
results in Fig. 4.

Another possible factor influencing the sparsity of responses could be the learning signal in response to 
unexpected stimuli. We have shown that while unexpected stimuli have sparser responses in the classification 
task, they lead to stronger learning signals, which could in turn lead to experimental measurements that show 
increased activity.

The properties of individual neurons, such as the activation threshold, gain, sharpness of the tuning curves or 
density of the tuning curves are all factors that determine the average neural activity of a population. We showed 
that all these factors can be influenced by the prior probability of a certain stimulus. Which factors are contribut-
ing strongest depends on the actual task that is being performed, leading to different effects on the neural activity.

Our model shows a clear role for the bias and to lesser extent the gain of individual neurons in the encoding 
of expected stimuli. Interestingly, lowered activation thresholds as suggested by our model have also been implied 
by observations that neurons encoding a stimulus fire already more strongly in response to a cue indicating that 
the stimulus is expected31–33, where the latter study also observed a subgroup of neurons showing gain effects 
in response to expected stimuli.

Besides the effects on the bias and gain of individual neurons we also found that the tuning curves of indi-
vidual neurons adapted to efficiently encode more likely stimuli in the estimation task. The efficient allocation 
of limited neural resources to more likely stimuli has been suggested as a driving force underlying the formation 
of neural representations of prior knowledge4,10,19,34,35. Simulations have shown that maximizing Fisher informa-
tion under limited resources results in denser and narrower tuning curves around expected stimuli values. Our 
results agree with such an efficient allocation of resources, with the important notion that the slopes of the tuning 
curves are actually concentrated around the most likely stimulus values. While some studies have suggested that 
the peak of a tuning curve is most important for encoding a stimulus36, others claim that the steepest slope of a 
tuning curve is most important37,38. Interestingly, a theoretical analysis of tuning curve information properties 
has indicated that maximal-slope encoding is most efficient for two-alternative-forced-choice tasks (such as 
our classification task) as well as an estimation task under reasonable levels of neuronal noise39, whereas peak-
tuning-curve encoding has been shown to be more efficient only in an estimation task with high neuronal noise 
and a small population of neurons. The representation developed by our model agrees well with these findings 
and makes interesting suggestions for empirical validation.

Predictions for empirical validation.  We have shown that the particular effect that the prior has on the 
neural activity depends on the particular task that is being performed. Different mechanisms can give rise to the 
observed effects on neural activity. To verify which mechanisms are at play under which circumstances, more 
detailed experiments are necessary, that not only investigate the effects of prior knowledge on neural activations, 
but also properties of individual neurons such as their receptive fields and activation thresholds.

We find a large effect on the activation thresholds of neurons, with only a small effect due to gain modulations 
when there is a cue to indicate which stimuli are expected and which are unexpected. Changes in the activa-
tion threshold as a result of neural activity have been observed in real neurons18, and could potentially play a 
role in the encoding of prior knowledge. This mechanism we observed also allows for flexibly adjusting this 
activation threshold by increasing the baseline input to a neuron. This enables the neural population to adjust 
its prior expectations based on the context. While such lowered activation thresholds have also been implicitly 
observed by stronger firing rates for neurons encoding a stimulus in response to a cue indicating that the stimu-
lus is expected31–33, future studies could further confirm these changes in activation threshold. Validating this 
prediction requires intracellular recordings of sub-threshold activity, to see whether a contextual cue increases 
sub-threshold membrane potentials in neurons encoding stimuli that have a higher prior probability.

In the estimation task our model suggests that neural tuning curves are organized such that more neurons 
have their maximal slope around more likely stimuli. This could be validated by mapping tuning curves in 
response to oriented gratings in the visual cortex. An overrepresention of the cardinal axis due to prior expo-
sure, as empirically observed4, suggests that more neurons should have the maximal slope of their tuning curves 
around the cardinal axis, while fewer neurons have their maximal slope around the oblique orientations.
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Limitations.  Our approach builds on several approximations and assumptions that are important to clarify. 
Such assumptions can be potential limiting factors to the extension where the shown results hold.

We have chosen to model the input to our network as Poisson neurons, both out of practical considerations 
that for such neurons a Bayesian model can be analytically derived, but also for prevalent evidence showing (close 
to) Poisson like behaviour in the brain40,41. It is important to note that there also exists strong deviations from 
Poisson like behaviour, especially in some brain areas42. Also on small time scales such deviations occur43. Non 
Poisson like behaviour could allow for a decoupling between the mean and variance in the spike rate, allowing 
for an alternative encoding of uncertainty7. Such a code could also require a different mechanism of representing 
prior knowledge, which allows for interesting directions for future research.

To make it possible to compare our network to an optimal Bayesian model, we have resorted to relatively 
simple behavioral tasks. The binary classification task requires the learning of a linear optimal decision bound-
ary, something that is relatively easy to learn. Whether a similar mechanism as found here plays a role in more 
complex tasks with natural stimuli requires further investigation in the future.

To train our network we used the backpropagation algorithm. There has been much debate regarding the bio-
logical plausibility of this learning algorithm, which has been criticized because of its biological implausibility44, 
for example regarding the non-locality of the information needed to update the weights, or the symmetry in 
the connectivity needed to backpropagate information in the network. Recent work has shown how, through 
relatively mild assumptions on e.g. dendritic segregation, patterns of spike timing, inhibitory microcircuits, short-
term plasticity and feedback connections backpropagation can be achieved by biological networks45. For example, 
by allowing learning signals to travel through random feedback weights drops the requirement for symmetrical 
connectivity46 and by using segregated dendrites, it is prevented that confusion between learning signals and 
stimulus information occurs47. At the same time, models trained through backpropagation have been successful 
at explaining actual brain responses and learning behaviour, indicating that the brain might use similar learning 
mechanisms to adapt synaptic connections11,48–50. It remains an open question whether the brain has found ways 
to implement some biological approximation of backpropagation, or whether it is a shear coincidence that deep 
learning models develop similar representations and mechanisms as the brain does. Further development on 
biologically plausible implementations of the backpropagation algorithm is needed to resolve this question in 
the future. By validating predictions from work such as this we can further establish the explanatory power of 
mechanisms learned through the backpropagation algorithm, for the understanding of cortical activity.

Future work.  One important aspect of cognitive processing that is not included in our model, but that can 
also have a major effect on neural activations, is the role that feedback processing plays in the brain. A popular 
theory that describes how prior knowledge influences our perceptual processing is predictive coding. Accord-
ing to this theory, the brain forms predictions about incoming sensory information based on its internal prior 
knowledge. Since prior knowledge ‘explains away’ some of the sensory input through feedback, this also influ-
ences neural responses to expected stimuli14. Since we used only feed-forward neural networks to model neural 
responses, this prevents feedback mechanisms from playing a role in encoding prior knowledge. An important 
step for future simulations would be to incorporate such feedback connections.

One way of doing this is through recurrent computations by adding a time component to our networks. Such 
a time component also allows for distinguishing neural activity in response to a cue, from neural activity in 
response to actual stimuli. This would allow to answer the question how a neural population could dynamically 
adjust to expected stimuli in order to improve sensitivity around expected stimuli values.

Conclusions.  We have shown that a model population of neurons can learn to correctly represent and incor-
porate prior knowledge, by only receiving feedback about the accuracy of their inference from trial-to-trial and 
without any probabilistic feedback. The prior probability of a stimulus affects the neural responses of the neural 
populations to this stimulus, where activations can either increase or decrease depending on the task. We show 
different mechanisms that influence the neural activations. We find that the activation thresholds of neurons 
encoding a certain stimulus play an important role in representing its prior probability, with more likely stimuli 
having a lower activation threshold. In a task where estimating the exact stimulus value is important, more likely 
stimuli also lead to denser receptive field distributions and more narrow receptive fields, allocating computa-
tional resources such that information processing is enhanced for more likely stimuli. These results pose some 
clear and testable predictions about the neural representations of prior knowledge in commonly used experi-
mental paradigms that can guide new experiments.
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