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Abstract

We introduce a new framework for hyperrealistic reconstruction of perceived
naturalistic stimuli from brain recordings. To this end, we embrace the use of
generative adversarial networks (GANs) at the earliest step of our neural decoding
pipeline by acquiring functional magnetic resonance imaging data as subjects
perceived face images created by the generator network of a GAN. Subsequently,
we used a linear decoding approach to predict the latent state of the GAN from brain
data. Hence, latent representations that are needed for stimulus (re-)generation
are obtained, leading to ground-breaking image reconstructions. Altogether, we
have developed a highly promising approach for decoding neural representations
of real-world data, which may pave the way for systematically analyzing neural
information processing in the functional brain.

Disclaimer: This manuscript contains no real face images; all faces are artificially
generated by a generative adversarial network.

1 Introduction

In recent years, the field of neural decoding has been gaining more and more traction as advanced
computational methods became increasingly available for application on neural data. This is a very
welcome development in both neuroscience and neurotechnology since reading neural information
will not only help understand and explain human brain function, but also find applications in brain
computer interfaces and neuroprosthetics to help people with disabilities.

Neural decoding can be conceptualized as the inverse problem of mapping brain responses back to
sensory stimuli via a latent space [18]. Such a mapping can be idealized as a composite function
of linear and nonlinear transformations. The linear transformation models the mapping from brain
responses to the latent space. The latent space should effectively capture the defining properties of
the underlying neural representations. The nonlinear transformation models the mapping from the
latent space to sensory stimuli.

The systematic correspondences between latent representations of discriminative convnets and neural
representations of sensory cortices is well established [20, 12, 2, 6, 7, 5]. As such, exploiting
these systematic correspondences by adapting discriminative convnets for generative modeling has
pushed the state-of-the-art in neural decoding forward [9, 8, 15]. Yet, there is still much room for
improvement since state-of-the-art results still fall short of providing photorealistic reconstructions.
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Figure 1: Schematic illustration of the HYPER framework. Face images are generated from randomly
sampled latent features z ∈ Z by a face-generating GAN, as denoted by the dotted box. These faces
are then presented as visual stimuli during brain scanning. Next, a linear decoding model learns
the mapping from brain responses to the original latent representation, after which it predicts latent
features ẑ for unseen brain responses. Ultimately, these predicted latent features are fed to the GAN
for image reconstruction.

At the same time, generative adversarial networks have emerged as perhaps the most powerful
generative models to date [4, 10, 11, 1] that can potentially bring neural decoding to the next level.
However, since the true latent representations of GANs are not readily available for preexisting
neural data (unlike those of the aforementioned discriminative convnets), the adoption of GANs in
neural decoding has been relatively slow (see [14] for an earlier attempt with GANs and [19] for a
related attempt with VAEs) and still falls short of providing high-fidelity reconstruction of naturalistic
stimuli.

In this study, we introduce a very powerful yet simple framework for HYperrealistic reconstruction
of PERception (HYPER), which elegantly integrates GANs in neural decoding by combining the
following components (Figure 1).

First, we used a pretrained generative adversarial network, which allows for the generation of mean-
ingful data samples from randomly sampled latent vectors. This model is used both for generating
the stimulus set and for the ultimate reconstruction of perceived stimuli. In the current study, we used
the progressive growing of GANs (PGGAN) model [10], which generates photorealistic faces that
resemble celebrities.

Second, we made use of neural data with a known latent representation, obtained by presenting
the stimulus set produced using the above-mentioned generative model, and recording the brain
responses to these stimuli. In the current study, we collected fMRI recordings in response to the
images produced using the PGGAN. We created a dataset consisting of a separate training and test
set.

Third, we used a linear model, mapping the neural data to the latent space of the generative model.
In the current study, we trained a ridge regression model using the data from the training set. Using
this model, we then obtained latent vectors for the neural responses corresponding to the stimulus
images in the test set. Feeding these latent vectors back into the generative model resulted in the
hyperrealistic reconstructions of perception.

2 Related work

Deep neural networks (DNNs) have previously been used for neural decoding of visual experience
[18]. Examples include linear reconstruction of perceived handwritten characters [13], decoding
of perceived and imagined object categories [9], and reconstruction of perceived and imagined
natural images [15, 14]. In the light of face perception, the most closely related work is probably
that of Güçlütürk et al. [8] and VanRullen & Reddy [19]. HYPER distinguishes itself from these
approaches by using artificially generated face stimuli of which the latent representations needed for
(re-)generation are known, instead of estimating latent features from the images by dimensionality
reducing techniques.
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Güçlütürk et al. [8] have used a deep convolutional neural network in combination with principal
component analysis (PCA) to perform the nonlinear encoding transformation from face images from
the CelebA dataset (224× 224 pixels) into 699-dimensional latent features. Next, latent representa-
tions are predicted from brain activations by maximum a priori (MAP) estimation. Ultimately, face
reconstructions (64× 64 pixels) are obtained by nonlinear decoding of the predicted latent features
using a the pre-trained generator network of a GAN that takes the adversarial loss, feature loss, and
stimulus loss into account.

VanRullen & Reddy [19] trained a variational autoencoder-generative adversarial network (VAE-
GAN) on face images from CelebA. The encoder network encodes face images (128× 128 pixels)
into 1024-dimensional latent representations. Next, the linear relationship between latent features
and brain responses is determined by linear regression to predict the latent features from unseen
brain responses. And eventually, face images are reconstructed by feeding these latent vectors to the
VAE-GAN’s decoder network.

3 Methods

3.1 Training on synthetic images with known latent features

State-of-the art face reconstruction techniques use deep neural networks to encode vectors of latent
features for the images presented during the fMRI experiment [8, 19]. These feature vectors have
been shown to have a linear relation with measured brain responses that can be captured using a
multivariate linear regression. However, this approach entails information loss since the target images
need to be reconstructed from the linear prediction using an approximate inversion network such as
a variational decoder. This reconstruction is imperfect even when the ground truth latent is known,
leading to a severe bottleneck to the maximum possible reconstruction quality.

In this paper, we avoid this sub-optimality by presenting to the participants photorealistic synthetic
images generated using a PGGAN. This allows us to store the ground-truth latents corresponding to
the generated images which can be perfectly reconstructed using the generative model.

3.2 Linear neural decoding

The linear relationship between voxel responses and latent features is estimated using ridge regression.
For each latent feature z we minimize a loss term of the form:

L =
M∑
i=1

(
zi −wTxi

)2
+ λ||w||22 (1)

where xi and zi represent the measured voxel responses and latent feature value for the i-th observa-
tion, respectively, w are the model coefficients, and λ the regularization parameter. As we are dealing
with with multi-target output, ridge regression returns a combination of 512 single-output models (i.e.
one model per latent value). Generalized (leave-one-out) cross-validation is used to select the most
appropriate regularization parameter (λ = 100, 500, 1000, 2000, or 5000).

3.3 Datasets

3.3.1 Visual stimuli

High-resolution face images (1024 × 1024 pixels) are generated by the generator network of a
Progressive GAN (PGGAN) model [10] from randomly sampled latent vectors. Each generated face
image is cropped and resized to 224× 224 pixels. In total, 1050 unique faces are presented once for
the training set, and 36 faces are repeated 14 times for the testing set. In this way, it is ensured that
the training set covers a large stimulus space to fit a general face model, whereas the voxel responses
from the testing set contain less noise and higher statistical power.

3.3.2 Brain responses

An fMRI dataset was collected, consisting of BOLD responses that correspond to the perceived face
stimuli. The BOLD responses (TR = 1.5 s, voxel size = 2 × 2 × 2 mm3, whole-brain coverage)
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of two healthy subjects were measured (S1: 30-year old male; S2: 32-year old male) while they
were fixating on a target (0.6× 0.6 degrees) [17] superimposed on the stimuli (15× 15 degrees) to
minimize involuntary eye movements.

Figure 2: Functional ROI: 4096 most active voxels based on highest z-statistics within the averaged
z-map from the training set responses, resulting in a distributed network of activity. Top: fROI from
Subject 1. Bottom: fROI from Subject 2.

During preprocessing, the obtained brain volumes are realigned to the first functional scan and the
mean functional scan, respectively, after which the volumes are normalized to MNI space. A general
linear model is fit to deconvolve task-related neural activation with the canonical hemodynamic
response function (HRF). Next, for each voxel, we computed its t-statistic (the probability of true
activation corresponds to a high t-statistic), and converted these t-scores to z-statistics to obtain a brain
map in terms of z per perceived stimulus. Ultimately, the average z-map is taken from all training
set responses to cancel out random activations. From this average brain map, the most active 4096
voxels are selected as a functional region of interest (fROI) for the remainder of this study (Figure 2).
After all, training images are only presented once such that these individual recordings contain a high
signal-to-noise ratio. As expected, most of these fROI voxels are located in the visual ventral stream.
Voxel responses from the testing set are not used to create this mask to avoid double-dipping.

The experiment was approved by the local ethics committee (CMO Regio Arnhem-Nijmegen).
Subjects provided written informed consent in accordance with the Declaration of Helsinki. The
fMRI dataset is available from the first author on request and the code is linked in the Supplementary
Materials.

3.4 Evaluation

3.4.1 Performance metrics

Performance of the linear decoding model on the test set of the fMRI dataset is assessed by four
metrics: (i) the average Euclidean distance and (ii) average Pearson correlation coefficient between
each of the 512 feature dimensions of true and predicted latent vectors, and (iii) the average feature
similarity and (iv) average Pearson correlation coefficient between stimuli and their reconstructions.
Specifically, feature similarity is defined as the Euclidean similarity between feature extraction layer
outputs (n = 2048) of the ResNet50 model, pretrained for face recognition.

3.4.2 Feature scores

Based on the assumption that there exists a hyperplane in latent space for binary semantic attributes
(e.g. male vs. female), [16] have identified the decision boundaries for five semantic face attributes
in PGGAN’s latent space: gender, age, the presence of eyeglasses, smile, and pose, by training five
independent linear support vector machines (SVMs). We used these five decision boundaries to
compute feature scores by taking the dot product between latent representation and decision boundary.
In this way, model performance with regard to specific visual features can be assessed.
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3.5 Implementation details

fMRI preprocessing is implemented in SPM12 after which first-order analysis is carried out in
Python’s Nipy environment. NVIDIA’s PGGAN TensorFlow source code is used in combination
with CUDA V10.0.130, CuDNN, and Anaconda3 (Python 3.6). Keras’ pretrained implementation of
VGGFace (ResNet50 model) is used to evaluate similarities between feature maps of the perceived
and reconstructed images. Linear decoding is implemented using ScikitLearn.

4 Results

Linear decoding of fMRI recordings using PGGAN’s latent space has led to unprecedented stimulus
reconstructions. Figure 3 presents all of the image reconstructions together with the originally
perceived stimuli.

To keep the presentation concise, the first half of the images (1-18) are reconstructed from brain
activations from Subject 1 and the second half (19-36) from Subject 2. The complete collection of
reconstructions can be found in the supplement, including interpolations and feature scores. The
interpolations visualize the distance between predicted and true latent representations that underlie the
(re)generated faces. It demonstrates which features are being retained or change. The bar graphs next
to the perceived and reconstructed images show the scores of each image in terms of five semantic
face attributes in PGGAN’s latent space: gender, age, the presence of eyeglasses, smile, and pose.
Looking at the similarities and differences in the graphs for perceived and reconstructed images is a
way to evaluate how well each semantic attribute is captured by our model. For most reconstructions,
the two graphs match in terms of directionality. There are a few cases, however, demonstrating that
there is still room for improvement, e.g. number 31, 33 and 35.

We further assessed the model performance of HYPER with respect to the consistency of these five
semantic features by correlating the values for the reconstructions and perceived stimuli. We found
high correlations for gender, pose, and age, but no significant correlation for the smile attribute
(Figure 4).

Next, we compared the performance of the HYPER framework to the state-of-the-art VAE-GAN
approach [19] and the eigenface approach [3]. We compared the Euclidean distance and Pearson cor-
relation coefficient between the predictions and ground truth images. All quantitative and qualitative
comparisons showed that the HYPER framework outperformed the baselines and had significantly
above-chance latent and feature reconstruction performance (p « 0.01, permutation test) (Table 1).

Table 1: Reconstruction performance of our method compared to the state-of-the-art VAE-GAN [19]
and the eigenface approach [3] is assessed in terms of the Euclidean distance and Pearson correlation
coefficient between prediction and ground truth. The first two columns involve true and predicted
latent vectors whereas the last two columns concern the features of stimuli and their reconstructions.
The table displays mean values ± standard errors. Given that all three methods require different
image resolutions, all images are resized to 224 × 224 pixels for a fair comparison. In addition,
statistical significance of our method is evaluated by permutation tests.

Eucl. dist. latents Corr. coef. latents Eucl. dist. feats. Corr. coef. feats.
S1 HYPER 1.1615 ± 0.0525 0.0283 ± 0.0284 5.5285 ± 0.1796 0.2326 ± 0.0234

(p < 0.001; perm.test) (p < 0.001; perm.test) (p < 0.001; perm.test) (p < 0.001; perm.test)
VAE-GAN - - 6.4644 ± 0.1083 0.0951 ± 0.0140
Eigenface - - 6.6013 ± 0.0868 -0.0024 ± 0.0086

S2 HYPER 1.1934 ± 0.0556 0.0261 ± 0.0287 5.5669 ± 0.1748 0.1718 ± 0.0226
(p < 0.001; perm.test) (p < 0.001; perm.test) (p < 0.001; perm.test) (p < 0.001; perm.test)

VAE-GAN - - 6.6233 ± 0.1103 0.0928 ± 0.0124
Eigenface - - 7.2894 ± 0.1180 0.0108 ± 0.0102

We also present arbitrarily chosen but representative reconstruction examples from VAE-GAN and
eigenface approaches, again demonstrating that the HYPER framework resulted in markedly better
reconstructions (Figure 5). It is important to note that the reconstructions by the VAE-GAN approach
appear to be of lower quality than those presented in the original study. One likely explanation for this
result could be that the number of training images in our dataset was not sufficient to effectively train
their model. The training set used in [19] consisted of ∼8000 face images, whereas ours consist of
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Figure 3: Results of testing set samples 1-18 for Subject 1 and 19-36 for Subject 2. Image reconstruc-
tions (left) versus perceived images (right), where interpolations visualize similarity regarding the
underlying latent representations. Next to each reconstruction and perceived stimulus, a rotated bar
graph displays the corresponding feature scores for gender, age, eyeglasses, pose, and smile.

1050 face images only. For a fair comparison, we used the present dataset to evaluate all the methods
presented in this study.
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Figure 4: Reconstruction performance on five features. The X axis denotes the true scores with
respect to the perceived stimuli whereas the Y axis represents the predicted scores with respect to the
reconstructions. Additionally, the Pearson correlation coefficient (r) and corresponding p-value (p)
are displayed.

Figure 5: Qualitative results of our approach compared to [19] and the eigenface approach in
reconstructing image 26, 28, and 36 (arbitrarily chosen). The reference columns display the best
possible results. For [19], this displays reconstructions directly decoded from the 1024-dimensional
latent representation of this method. For the eigenfaces approach, this shows reconstructions directly
obtained from the 512 principal components.

5 Discussion

We have shown how the latent space learned by a generative network can be used for linear decoding
of brain activations, thereby serving as a proof-of-concept of using generative modeling to approx-
imate neural manifolds of real-world data. The success of this approach is due to the astonishing
performance of PGGAN for generating human faces. At the same time, this also puts (potential)
bottlenecks on what can be reconstructed. In this study, PGGAN’s generator had to regenerate face
images that it had already generated before, guaranteeing its competence. The next step is verifying
whether a linear decoding model trained on brain responses with regard to generated face images
generalizes to brain responses to real faces. The true latent representations of real images are not
accessible, but would no longer be required if the decoding model has learned to accurately predict
them from the artificial data samples. This would result in a great leap forward within the field of
neural coding.
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However, even though the artificial face images look incredibly realistic, this does not guarantee
the ability of the generator network to reconstruct any face perceived in real life. The current re-
constructions are already observed to contain biases. That is, the model predicts primarily latent
representations corresponding to young, western-looking faces without eyeglasses, because pre-
dictions tend to follow the image statistics of the training set, containing these feature imbalances.
Also PGGAN’s generator network is known to suffer from this problem - referred to as feature
entanglement - as manipulating one particular feature in latent space affects other features as well
[16]. For example, editing a latent vector to make the generated face wear eyeglasses simultaneously
makes the face older because of such biases in the training data. Feature entanglement obstructs the
generator to map unfamiliar latent elements to their respective visual features. It is easy to foresee
the complications for reconstructing real face images.

A modified version of PGGAN, called StyleGAN [11], overcomes the feature entanglement problem.
StyleGAN maps the entangled latent vector to an additional intermediate latent space - thereby reduc-
ing feature entanglement - which is then integrated into the generator network using adaptive instance
normalization. This results in superior control over the semantic attributes in the reconstructed images
and possibly the generator’s competence to reconstruct unfamiliar features. Replacing the PGGAN
with StyleGAN could therefore be a logical next step for studies concerned with the neural decoding
of faces.

Finally, neural decoding can reveal what subject-specific information is (not) present in the observed
brain activations. That is, even though participants are presented with identical stimuli, sensory
information is likely to be integrated with subjective expectations and beliefs, causing subjective vari-
ations in reconstructions. This may include enhanced, diminished, missing, imagined, or transformed
information. Eventually, the HYPER framework might allow us to bridge the gap between objective
and subjective experience.

6 Conclusion

We have presented a framework for HYperrealistic reconstruction of PERception (HYPER) by linear
neural decoding of brain responses via the GAN latent space, leading to unparalleled state-of-the-art
stimulus reconstructions. Considering the speed of progress in the field of generative modeling,
we believe that the HYPER framework that we have introduced in this study will likely result in
even more impressive reconstructions of perception and possibly even imagery in the near future,
ultimately also allowing to better understand mechanisms of human brain function.

Broader Impact

The neural decoding framework presented in this paper is offers access to the subjective contents of the
human mind by linear reconstruction of encoded sensory stimuli, possibly bringing our understanding
of human brain function forward in the process. Besides the large scientific potential, neural decoding
can also enable various applications in the field of neurotechnology (e.g. brain computer interfacing
and neuroprosthetics) to help people with disabilities. While the current work focuses on decoding
of sensory perception, extensions of our framework to imagery could make it a preferred means for
communication for locked-in patients through a brain computer interface. However, care must be
taken as “mind reading” technologies also involve serious ethical concerns regarding mental privacy.
Although current approaches to neural decoding, such as the one presented in this manuscript, would
not allow for involuntary access to thoughts of a person, future developments may allow for extraction
of information from the brain more easily, as the field is rapidly developing. As with all scientific and
technological developments, ethical principles and guidelines as well as data protection regulations
should be followed strictly to ensure the safety of (the data of) potential users of these technologies.
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in neural decoding. In Explainable AI: Interpreting, Explaining and Visualizing Deep Learning,
pages 379–394. Springer, 2019.

[19] Rufin VanRullen and Leila Reddy. Reconstructing faces from fmri patterns using deep generative
neural networks. Communications biology, 2(1):193, 2019.

[20] Daniel LK Yamins, Ha Hong, Charles F Cadieu, Ethan A Solomon, Darren Seibert, and James J
DiCarlo. Performance-optimized hierarchical models predict neural responses in higher visual
cortex. Proceedings of the National Academy of Sciences, 111(23):8619–8624, 2014.

9

was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (whichthis version posted July 2, 2020. . https://doi.org/10.1101/2020.07.01.168849doi: bioRxiv preprint 

https://doi.org/10.1101/2020.07.01.168849

	Introduction
	Related work
	Methods
	Training on synthetic images with known latent features
	Linear neural decoding
	Datasets
	Visual stimuli
	Brain responses

	Evaluation
	Performance metrics
	Feature scores

	Implementation details

	Results
	Discussion
	Conclusion

