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Figure 5: Voxel-wise correlations of the motion energy encoding model. The color map encodes Pearson’s correlations
between the measured BOLD activity and the activity predicted by each linear regression model on the held-out test
set.
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Figure 6: Average correlation across significant voxels (p<0.01, Bonferroni-corrected over number of voxels) over
amount of training data. The selection of significant voxels was done on the training run with maximum data.

only seems to peak at more than 16 hours of training samples from our participant. This observation is
probably characteristic of the motion energy encoding model which is a hypothesized representation for
early visual system areas, but may also affect models that cover higher order areas such as convolutional
neural networks.

Figure 8 shows average correlations over significant and all voxels estimated for individual sessions.
While there are differences between sessions, they appear to stay in the same range and we did not observe
severe outlier sessions in terms of performance with the motion energy model.
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(a) Correlations between predicted and measured voxel activities, averaged over voxels
within specific ROIs.
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(b) Increase in averaged correlations between predicted and measured activity, relative to
one hour of data.

Figure 7: Average correlation across significant voxels in specific ROIs (p<0.01, Bonferroni-corrected over total num-
ber of voxels) over amount of training data. 7a shows average correlations for significant voxels with increasing
amounts of training data, starting from the first session. 7b shows ROI-wise average correlations relative to using
only one (the first) hour of training data. We see that the early visual cortex reach their peak correlation much faster
than higher order areas.
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Figure 8: Average correlation across significant voxels (p<0.01, Bonferroni-corrected over number of voxels) for indi-
vidual sessions (specified by their run numbers). The selection of significant voxels was again done on all data.

Usage Notes

Please cite this data descriptor when using the data set for research purposes. See section Data Citations
at the end of this document for an example citation. The original authors of this data set do not have to
be listed as co-authors in subsequent research using it. For legal reasons related to our data use agreement
RU-DI-HD-1.0 researchers who want to access the data have to reveal their identity to the study authors
when requesting access via Donders Repository.
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