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A B S T R A C T

Representations learned by deep convolutional neural networks (CNNs) for object recognition are a widely
investigated model of the processing hierarchy in the human visual system. Using functional magnetic resonance
imaging, CNN representations of visual stimuli have previously been shown to correspond to processing stages in
the ventral and dorsal streams of the visual system. Whether this correspondence between models and brain
signals also holds for activity acquired at high temporal resolution has been explored less exhaustively. Here, we
addressed this question by combining CNN-based encoding models with magnetoencephalography (MEG).
Human participants passively viewed 1,000 images of objects while MEG signals were acquired. We modelled
their high temporal resolution source-reconstructed cortical activity with CNNs, and observed a feed-forward
sweep across the visual hierarchy between 75 and 200 ms after stimulus onset. This spatiotemporal cascade
was captured by the network layer representations, where the increasingly abstract stimulus representation in the
hierarchical network model was reflected in different parts of the visual cortex, following the visual ventral
stream. We further validated the accuracy of our encoding model by decoding stimulus identity in a left-out
validation set of viewed objects, achieving state-of-the-art decoding accuracy.
1. Introduction

Automatic object recognition has been a long-standing and difficult
research problem in computer vision. A few years ago, driven by the
availability of large-scale computing and training data resources, auto-
mated object recognition has reached and surpassed human-level per-
formance. The most successful object recognition models by far are deep
feed-forward convolutional neural networks (CNNs), which can learn
statistical properties of structured data such as natural images well
(Schmidhuber, 2014).

CNNs can be seen as an abstraction of rate-based coding in biological
neural circuits (Dayan and Abbott, 2005) and are inspired by the
anatomical wiring of the visual system as a hierarchy of processing stages
(Felleman and Van Essen, 1991). Receptive field properties become
increasingly complex higher up in this visual hierarchy. That is, receptive
fields in striate cortex respond to oriented bars in the visual input (Hubel
and Wiesel, 1959), whereas receptive fields in inferior temporal cortex
respond specifically to complex object properties. This is very similar to
CNNs, which learn simple edge detectors in early layers and more ab-
stract object features in higher layers. CNN-like architectures have been
motivated from a neuroscientific point of view with the introduction of
the Neocognitron by Fukushima (1980). This early model was already
invariant to scale, translation and deformation; three major requirements
of object recognition.

Another biological inspiration of contemporary CNNs is that their
feature detectors (receptive fields) are learned from natural data (the
natural environment) instead of using hand-engineered (a-priori) de-
tectors. In addition, CNNs are capable of learning other types of feature
detectors that are not considered by hand-designed (e.g. purely Gabor)
models, but appeared in theoretical contemplations about visual system
representations (e.g., see (Zeiler et al., 2010)). Similarly, in biological
systems even the earliest cortical receptive fields will only exist if the
organism has been exposed to certain visual environments in a critical
learning period after birth (Blakemore and Cooper, 1970; Hubel and
Wiesel, 1970). Using a universal learning algorithm throughout the hi-
erarchy, almost all of these object recognition networks learn Gabor-like
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Fig. 1. Design of individual trials. Images of objects were presented for 600 ms, preceded and followed by fixation periods. Participants could blink between each fixation. The
experiment consisted of 1,450 trials of 3 s length, resulting in 72 min of MEG acquisition time per participant.
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feature detectors in their lowest layer, similar to what is known about the
response properties or neuronal populations in V1 (Hubel and Wie-
sel, 1959).

Comprehensive reviews of the use of state-of-the-art neural networks
for probing neural information processing can be found in (Kriegeskorte,
2015; van Gerven, 2017; Yamins and DiCarlo, 2016). While some studies
have also focused on the dorsal visual stream (Güçlü and van Gerven,
2015b; Eickenberg et al., 2016) and auditory stream (Güçlü et al., 2016)
representations, most CNN-based investigations of neural processing
have focused on understanding representations in the visual ventral
stream (Yamins et al., 2014; Khaligh-Razavi and Kriegeskorte, 2014;
Güçlü and van Gerven, 2015a). The similarities between biological and
CNN object representations have mainly been studied with functional
magnetic resonance imaging (fMRI), using either the encoding model
framework or representational similarity analysis (RSA).

However, object recognition is a rapid process: discriminative infor-
mation exists as early as about 100 ms after stimulus onset (Thorpe et al.,
1996; van de Nieuwenhuijzen et al., 2013; Clarke, 2014). The
seconds-long temporal delay and indirect nature of the fMRI BOLD signal
therefore prohibit the investigation of how the network hierarchy
sequentially represents stimulus features across time and throughout
anatomical structures. An alternative approach is to combine CNNs with
electrophysiological measurements of neuronal activity such as electro-
encephalography (EEG) or magnetoencephalography (MEG) to probe the
dynamics of object processing in the human brain. This approach was
pioneered by Cichy et al. (Cichy et al., 2016; Cichy and Teng, 2016),
where RSA was used to show a correspondence between CNN layer
representations and neural representations across space in fMRI and time
in MEG.

In this study we expand on this work and used the encoding model
framework to probe how CNN-based representations are expressed in
space and time across the cortical surface using MEG. We encoded
source-reconstructed brain activity in response to the single-pass pre-
sentation of a large, varied set of object images using the VGG-S CNN
architecture (Chatfield et al., 2014), pretrained on the ImageNet
competition database. We show that the different layers of the CNN hi-
erarchy can be mapped onto separate regions in the visual cortical hi-
erarchy in space and time, and are able to model neural activity
developed as early as 45–75 ms after stimulus onset. Furthermore, we
demonstrate that the developed encoding model can be used to identify
(decode) the perceived stimuli from MEG measurements, even at the
single-trial level and after stimulus offset. This indicates the possibility of
future investigation of imagery-related processing (Horikawa et al.,
2013; Horikawa and Kamitani, 2016; Naselaris et al., 2015).
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2. Methods

Here, we first give a brief overview of the ideas behind our experi-
mental design, followed by a description of data preprocessing, source
modeling, anatomical alignment, the feature transformation of the
stimuli and our encoding and decoding procedures in complete detail.

2.1. Experiment overview and rationale

In brief, we presented 1,000 images of well-identifiable natural ob-
jects to each of 15 participants while we recorded the magneto-
encephalogram. A random subset of 50 images was repeated 10 times
(validation set), i.e. once in each block of 145 images, while the majority
of 950 images was presented once (estimation set). There was no specific
task, and the participants were asked to passively view the images. The
design of each 3 s-long trial is illustrated in Fig. 1. The extended post-
stimulus fixation period allowed us to study sustained representations
and decodability in the absence of the stimulus. The validation set was
used to obtain a cleaner estimate of the event-related fields. Focusing on
the variety of stimuli comes at the cost of not being able to obtain clean
event-related fields for all of them, but is generally more beneficial for
sampling as much of the feature space used for estimating the encoding
model as possible given a relatively short experimental session.

The experimental design and data analysis follows the idea of system
identification via encoding models (Wu et al., 2006; Gallant et al., 2011;
Naselaris et al., 2011). Naturalistic stimuli were chosen under the
assumption that sensory systems have evolved to be optimally adapted to
the specific statistics of natural scenes (Bell and Sejnowski, 1997). The
computational goal of arriving at invariant cortical representations of
objects is believed to be realized by transforming the retinal input
through a series of nonlinear processing steps in the ventral stream. The
resulting representations are assumed to be reflected in characteristic
patterns of brain activity and to be discoverable by using candidate
representations to predict brain activity within an encoding model
framework. Candidate representations were taken from the learned hi-
erarchy in a state-of-the-art feedforward CNN (VGG-S from (Chatfield
et al., 2014)), trained on natural photos with the objective function of
object classification. Similar to what we know about biological visual
systems, these networks start their feature detection hierarchy with
low-level edge detectors and arrive at an invariant object representation.
In-between these steps are intermediate learned representations of rising
complexity.

To link neural networks to patterns of brain activity, we modelled
cortical source activity from the MEG sensor activity using source
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reconstruction on individual brain surface models. Next, for each
participant we developed a source-wise encoding model, predicting the
modelled source activity globally using CNN representations. The
encoding model uncovers when and where cortical activity is similar to
these representations. The resulting encoding model can also be used for
decoding, where the most likely stimulus is selected from a set of
candidate stimuli based on observed brain activity.

2.2. Experimental design

2.2.1. Stimuli
The presented natural images were mainly selected from the Bank of

Standardized Stimuli (BOSS), and partly from Amsterdam Library of
Object Images (ALOI) databases ((Brodeur et al., 2010, 2014; Geusebroek
et al., 2005)) and from the author's own collections. The BOSS database
was standardized towards non-ambiguous identification or naming
agreement. We chose a subset of images that could be classified correctly
or similarly within the set of five most probable output classes of the
VGG-S neural network. With the aim of obtaining 1,000 classifiable
stimulus images, we took 905 images from the BOSS database and chose
the remaining 95 from the ALOI database and the author's collections.
For all images, the monochrome white or black background was changed
to middle grey to reduce visual strain. From the 1,000 images, a random
subset of 950 images was presented once and will be referred to as the
estimation set. Its function was to sample the representation spaces as
comprehensively as possible in an experiment using a wide range of
different natural stimuli. The remaining 50 images were repeated 10
times throughout the experiment and are referred to as the validation set.
It amounted to approximately one third of the presented stimuli and was
used to obtain event-related fields (ERFs) with a higher signal-to-noise
ratio in order to report encoding and decoding performances. When
using the validation set, we averaged single-trial source time courses over
up to 10 trials of a stimulus, i.e. those that were not rejected during
preprocessing. Similarly, the first presentation of an image of the valida-
tion set (a single trial from this set) was its first trial that was not rejected.
The validation set was held out from training, and significance or the
optimal layers were determined by cross-validating on the estimation set.

2.2.2. Trial design and experiment regime
Each 3-s long trial contained the presentation of one stimulus image

for 600 ms, which was presented spanning 8 degrees of the visual field
together with a black fixation point in the centre. Before and after the
presentation there were phases of 400 ms (partly used as activity base-
line) and 1000 ms (post-stimulus period) respectively in which just the
fixation point was shown. Participants were allowed to blink within a
1000 ms period after each trial that was indicated by the absence of a
fixation point. The total inter-stimulus interval was 2400 ms. See Fig. 1
for the trial structure.

The experiment consisted of 10 blocks 145 images each, with a block
duration of 435 s. Each block contained one complete repetition of the 50
images in the validation set. The validation set images were randomly
permuted between the block's estimation set images. The sequence was
different for every participant. After each block we talked to the partic-
ipant, allowing time for rest.

2.3. Experimental procedure

2.3.1. Participants
We recruited our participants through the Research Participation

System of Radboud University. The recruitment system prescreening
excluded participants with any kind of permanent metallic implants or
components, as well as those with brain-related health problems. We
acquired recordings of 15 participants (3 male) aged 20–37 years (mean
age: 25.2, median: 24).

The participants gave written informed consent in accordance with
the Declaration of Helsinki. The study was approved by the local ethical
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review board (CMO region Arnhem-Nijmegen, The Netherlands) and was
carried out in accordance with the approved guidelines.

2.3.2. MEG system set-up
Participants were sitting in a 275-channel whole-head MEG system

(CTF Systems Inc., Port Coquitlam, Canada) in a dark magnetically
shielded room. We recorded the magnetoencephalogram at 1,200 Hz.
The stimuli were presented using an LCD projector, which lead to a quasi-
instantaneous presentation with less than 1 ms delay. To maintain
magnetic shielding, the projector was set up outside the magnetically
shielded MEG scanner room, and the image was back-projected onto a
translucent screen inside the scanner room with two mirrors. To present
the experiment we used the stimulus software Presentation (Neuro-
behavioral Systems, 2016, https://www.neurobs.com) on a Windows 7
system, with cautious system settings such as reduced network commu-
nications. MEG and additional data recordings (stimulus triggers, electro-
oculogram, eye tracker data) were collected inmulti-channel data files on
a real-time CentOS system. Head localization was done on this system as
well. Head tracking for manual position correction was done on an
additional NeuroDebian system in Matlab with the algorithm described
in (Stolk et al., 2013).

2.3.3. Participant preparation
Before the experiment participants received information about the

nature of the data recording modalities and reasons for avoiding move-
ments and metallic objects in the scanner. They were asked to wear
contact lenses in case of myopia, not to wear eye make-up on the MEG
recording day and avoid scheduling MRI recordings during the previous
few days. Participants were provided with non-magnetic clothes.

Electrodes were attached to the right collarbone and lower left rib,
recording the electrocardiogram (ECG) to facilitate removing the heart
signal noise in the MEG. Saccades and eye blinks were measured with an
SR Research Eye Link 1,000 (SR Research, Ottawa, Canada) eye tracker.
In addition, we recorded the vertical and horizontal electro-oculograms
(EOG) by two pairs of electrodes placed above and below, and lateral
to both eyes, respectively. The ground electrode for EOG and ECG was
attached behind the left ear. Head localization coils were attached to the
nasion, and to a set of ear molds that were placed in the left and right ear
shell. Participants were provided with neckbands to support their head
position, and instructed about ways to minimize movement. After being
seated in the scanner they had ten to 20 min to find a comfortable po-
sition while other system components were initialized. Light was dim and
light conditions were consistent for all participants. Potential unknown
magnetization or metallic objects were excluded by visually inspecting
the MEG signal while participants were following movement in-
structions. Communication between participant and control room was
sustained with an intercom system and scanner room video monitoring.

After the MEG session we acquired structural MRI scans from our
participants in order to construct anatomically realistic volume conduc-
tion models and detailed cortically constrained source models. Fiducial
positions inside the MEG and MRI were assured to be identical using
matching sets of ear molds. Vitamin E capsules, attached to identically
shaped MRI earmolds, made visual localization in the T1 scans possible.

2.3.4. Stimulus task
Participants were instructed to fixate in the centre of the visual field

(fixation point) and to only blink during the phases where this fixation
point disappeared from the screen. They were informed about the purely
passive nature of the experiment and about the importance and potential
loss of attention throughout the sessions, which they were asked to resist
or report so they could recover. At the end of each block one single image
was presented. To complete the block, the participant had to decide with
a button press whether she had seen this image within the previous block
or not. Before starting a new block we asked them to adjust their current
position relative to their original one using real-time head tracking which
is available at our MEG system (Stolk et al., 2013).

https://www.neurobs.com
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2.4. Data preprocessing

Data preprocessing and source reconstruction was done using the
FieldTrip toolbox for EEG- and MEG analysis (Oostenveld et al., 2011)
(build: October 27th 2016, GitHub –short hash 458858a, http://www.ru.
nl/neuroimaging/fieldtrip). Preprocessing steps in this section are
described in the order they were applied to the data.

The data was filtered with a DFT filter to remove 50 Hz line noise and
its harmonics at 100 Hz and 150 Hz, with a data padding of 10 s. We then
extracted trials from the data and corrected the baseline on a trial-by-trial
basis by subtracting the average of �250 ms to �50 ms before stimulus
onset. A trial was defined as the time period spanning the presentation of
the fixation dot, that is from �400 ms to 1600 ms around image onset.
We downsampled the data to 300 Hz to numerically stabilize the sub-
sequent Independent Component Analysis (ICA). Before ICA, trial sum-
mary statistics were visually inspected and trials with overly high
variance and kurtosis were rejected. This served as an initial detection of
eye blinks and other muscle movements (Delorme et al., 2007). Muscle
artefacts were searched for specifically in a second round of visual in-
spection, for which the data was high-pass filtered at 100 Hz. In addition
to the manual rejection, trials were rejected with an automated function
when a z-scaled sample from at least one of the channels exceeded a
threshold of five units of standard deviation during stimulus presenta-
tion. We went through this procedure in a conservative manner and had
to reject 2–10% of the trials for each participant due to various kinds of
muscle movements. Subsequently, ICA was applied on the cleaned data
to identify the cardiac component and residual physiological artefact
components (related to eye blinks and movements). These components
were identified by visual inspection, and their corresponding sensor to-
pographies were projected out of the data. After this we inspected the
data visually once more to reject trials with potential artefacts and
movements, with the same procedure as before running the ICA. The
cleaned 300 Hz data was then once more baseline corrected with a
window of 250 ms–50 ms before the trial, and as a final step mildly
low-pass filtered at 100 Hz. In this sense we did not smooth the sensor
signal further and left higher frequencies intact. We did not perform
motion correction on the MEG data, relying on participants maintaining
their position with the help of the head tracking algorithm.

2.5. Source estimation procedure

2.5.1. Preprocessing of the anatomical MRIs
The anatomical MRI images were processed to create individual

cortically constrained source models, and volume conduction models for
source reconstruction. To this end, we registered the T1-weighted MRI
images to the CTF coordinate system by manually locating the fiducial
markers. The right hemisphere could be identified with an external
additional marker in the scans for all participants but one, for which we
reverted to the orientation of the majority of scans.

For the creation of the source models we used FSL, FreeSurfer and
HCP workbench. We performed skull stripping on the T1 scans with the
Brain Extraction Tool (BET) (Smith, 2002) of FSL, with the threshold set
at 0.5. We then ran the FreeSurfer surface reconstruction pipeline up to
the segmentation of the white matter. White matter segmentations were
visually inspected for artefacts, e.g. slabs of dura being misclassified as
white matter. We manually removed such misclassified voxels from the
segmented images with a visual tool. Subsequently, the surface-based
part of the standard FreeSurfer recon-all pipeline was run. These steps
resulted in a high resolution left and right hemispheric surface mesh for
each participant. These meshes were subsequently surface-registered to a
template mesh with 164,000 vertices per hemispheres, and down-
sampled to a resolution of 4,002 vertices per hemisphere, using HCP
workbench. We excluded vertices in the midline (corpus callosum and
brainstem) for further analysis, so our final meshes contained 7,344
dipole locations across both hemispheres.

We created a single shell volume conduction model, describing the
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inner surface of the skull, using standard FieldTrip functionality. The
forward model (leadfield) was computed using the method described in
(Nolte, 2003).

2.5.2. Anatomical parcellation labels
In order to get an idea of the anatomical structures corresponding to

the sources we matched individual sources on the meshes with
anatomical structures from the cortical parcellation from (Glasser et al.,
2016) as available in Human Connectome Workbench (Van Essen
et al., 2013).

2.5.3. Source activity reconstruction
Single-trial time courses of source activity were computed using

Linearly-Constrained Minimum Variance (LCMV) Beamformers (Van
Veen et al., 1997) using FieldTrip. This solution to the ill-posed inverse
problem assumes independent activity of individual sources. It obtains
the spatial filter si of a source by solving

si ¼
�
lTi Σ

�1li
��1lTi Σ

�1 (1)

where Σ is the sensor data covariancematrix and li are the elements of the
lead field matrix that are estimated for each dipolar source position. The
covariance matrix was estimated on all trials and regularized with a di-
agonal matrix with a value of 5% of the average sensor variance. The
location-specific leadfields were norm-normalized in order to account for
the beamformer's characteristic depth bias. The reconstructed 3D dipole
moments were projected onto the orientation with the largest variance,
leading to one-dimensional time courses for each dipole source.

2.5.4. Source responses
The linear regression models learned to predict the response of a

source within a specific time slice after stimulus onset (see Section 2.6).
After estimating activity based on the spatial filters and sensor activity X
we were left with a sampling rate of 300 Hz per source and trial. To
obtain an estimate of the response of each source at a specific time after
stimulus onset we binned this signal into consecutive time windows of
30 ms by averaging the signal. The underlying assumption is that visual
information is encoded by the population firing rates of the underlying
neuronal populations. These amplitude averages over time windows are
subsequently referred to as source responses and were used for encoding
analysis. As encoding models are trained to predict a single source
response for a specific time window (see below), correlations between
predicted and measured source responses are taken across stimuli and for
specific time windows. Thus when e.g. estimating model performance on
the validation set we would predict the responses of one source for all
stimuli for one specific time window (e.g. 75–105ms) and get the cor-
relation with the measured response. We then obtain the validation set
model performance for the time window 75–105ms, measured in cor-
relations for every source. We obtain correlations for each time window
in this way, which results in the validation set performance over time.

2.6. Encoding model

We used the encoding model framework as described in (Naselaris
et al., 2011), which tests the similarity between a hypothesized encoding-
and brain representation: Input stimuli are transformed into a linearizing
feature space (the encoding), which is used for predicting source-wise
brain activity with linear regression models. Similarity is then esti-
mated by evaluating their predictive power on a held-out test set. As a
consequence these feature representations are required to have a direct
(linear) relationship with the actual brain activity, which supports
interpretability. The linearizing requirement also ensures that there are
no implicit nonlinearities learned with more powerful machine learning
predictors, i.e. nonlinearities are all explicit within the designed feature
space. The power of voxel-wise encoding for both understanding brain
representations and for decoding perception from brain activity has been
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demonstrated before (Naselaris et al., 2011).

2.6.1. Feature transformation
Representation vectors for the stimulus set were obtained in the same

way as in (Güçlü and van Gerven, 2015a). As in this paper, we used the
pretrained version of the (Chatfield et al., 2014) VGG-S neural network,
pretrained on the ImageNet database (version for MatConvNet (Vedaldi
and Lenc, 2015)). VGG-S is an improved AlexNet-like network, which
means it is similar in architecture to the 8-layer network (Krizhevsky
et al., 2012) which was fundamental for the current wave of neural
network research. Every stimulus image n was passed through the 5
convolutional layers (referred to as layers 1–5) and 3 fully connected
layers (referred to as Layers 6–8) of this network. Layer representations
of the stimulus image were extracted at the pooling or rectified linear
unit (ReLU) layers. The obtained feature maps were flattened to a single
representation vector per layer, and then standardized to zero mean and
unit variance for each feature across the sample dimension. This hier-
archy of representations of an individual image is our hypothesis about
the hierarchy of visual system representations during object recognition
in the human brain. We assume that this hierarchy can be detected in
MEG via the encoding model framework.

2.6.2. Linear model and nested cross validation
For every image n we obtained source responses ys;t at a specific time

bin t and source s in each trial in which nwas presented.We also obtained
a feature representation (encoding) xn;L of this image n in each CNN layer
L. We estimated independent linear kernel ridge regression models
individually for every source, time point and deep network layer using a
nested cross-validation routine. Ridge regression was chosen to avoid
overfitting these linear regression models.

Let ys;t be a vector containing responses for every image, for one
specific sensor at one specific time bin. Let XL ¼ ðx1;L;…;xN;LÞT be a N �
M matrix representing the representation vectors for each image in a
specific layer L. The linear model's regression coefficients for a specific
time bin, source and layer βs;t;L ¼ ðβ1s;t;L;…; βNs;t;LÞ are then estimated by:

βs;t;L ¼ XT
L

�
XLXT

L þ λI
��1 ys;t

where λ � 0 is the regularization strength in ridge regression. Note that
to speed up model estimation we used the kernel formulation of ridge
regression.

The performance of each linear model is defined as the Pearson's
correlation between the measured source response and the response
predicted by the model. Since we created models for each time point and
neural network layer, each of the 7,344 sources has 53� 8 ¼ 424
regression models and thus prediction-activity correlation values.

These models were trained and evaluated with nested 10-fold cross
validation. Folds were selected at random from the 950 training trials.
Nested within each of these 10 cross-validation runs was one 5-fold cross
validation which was used for selecting the regularization strength λ
(best λ out of k ¼ 5 folds chosen with the procedure described in (Güçlü
and van Gerven, 2014)). The prediction-activity correlation coefficients
on this best λ fold were used to determine the statistically significant
sources (p ¼ 0:01 with Benjamini-Hochberg FDR correction over all
sources in a given time slice and layer). The final selection of significant
sources had to survive significance testing and FDR correction in each of
the 10 parent cross-validation folds. Within this procedure, for a single
source, performance was estimated by taking the average of the
prediction-activity correlations across all folds. These correlation values
on the estimation set were used to determine the best-explaining layer for
each source, and for selecting those sources that can be explained with
higher correlations.

For the other (quantitative) results, encoding and decoding perfor-
mances were estimated on the validation set, with the selection of sig-
nificant sources and best-explaining layer per source estimated as
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described above in the nested cross validation. The models were
retrained on all data from the single-trial estimation set for predicting
responses on the validation set.

2.6.3. Pixel space control model
Pixel-level models are known to be correlated with visual system

responses (Schoenmakers et al., 2013). We used a pixel-level model as a
control model. We resized the images to square images of 96� 96,
transformed them to the CIE 1976 L*a*b* (ISO 11664-4) color space and
took the flattened luminance (L) channel as a representation. In this
representation vector spatial coherence between image columns is lost.
The information contained in early VGG-S layers will still be similar to
this pixel space, but we expected that the larger receptive fields in higher
convolutional and the abstraction in fully connected layers outperforms
the pixel space model, especially in extrastriate regions. Our results
indicated that this control model was not able to predict the responses of
a substantial amount of sources for any of our subjects above
chance level.

2.6.4. Decoding
We performed a decoding analysis (identification) based on our

encoding models. Decodability of an image was defined based on Pear-
son's correlations between the predicted and measured source responses
to this image in a subselection of sources. The 50 images from the vali-
dation set were used for decoding. An image was called identified if it
obtained the highest prediction-activity correlation, compared to the
correlations of all other images. An image was decoded within the top-5
choice if its correlation was among the five highest ones.

We retrained encoding models βs;t for sources and time points on the
full estimation set, using information about significance (source-wise
best-explaining layers and source-wise average prediction-activity cor-
relations) from the nested cross-validation on the estimation set. We
further selected sources by applying a 0.3 threshold on the average
correlations from the nested cross-validation. For these selected sources,
we predicted the response to a given image from the validation set. Re-
sponses of all sources sn;t at time t were compared to the measured re-
sponses in the validation set (single initial presentation or 10-times
average) via correlation then.

3. Results

This section contains encoding and decoding performances on an
individual participant basis and summary statistics on the group level. On
the estimation set we estimated the encoding model, the selection of
predictable (above-chance) sources, and the optimal layers per source.
Encoding and decoding performances are shown on the validation set.

Each encoding model learned to predict the average source amplitude
within a specific τ ¼ 30ms time window after image onset. This time bin-
specific averaged activity is referred to as source response. Models were
independently trained in a mass-univariate manner, for each source
(whole-brain) and each time point within a trial. This means each of
these linear models predicted the activity of a single source (source-wise)
in a single time window after stimulus onset (time-wise). The indepen-
dent variables of these regression models were the 8 different represen-
tations from the 8 layers of VGG-S. These present our hypothesized
representations for the visual perception of static images. The underlying
assumption is that predictability of visual system source responses with
regularized univariate models indicates that the tested artificial repre-
sentations match the biological ones in the visual system.

3.1. Encoding of MEG source responses

3.1.1. Encoding performance
Fig. 2 shows individual mean encoding performances across all the

considered models for predicting source responses. This encoding



Fig. 2. Mean encoding performance in relation to the number of repetitions on the validation set for sources anatomically assigned to the visual cortex. The model shows considerable
mean correlations for 10 out of 15 participants. For 3 participants it is not predictive at all, and for 2 average correlations are low. We predicted the activity for each source for the time bins
between 75 ms and 600 ms after image onset for the 50 images in the validation set (before the 75–105 ms time bin, for most subjects no source activity can be predicted). Predictive
models were trained for each source-time bin combination on the full estimation set; with significance and optimal layers estimated during cross-validation within the estimation set.
Correlations between the predicted and the measured responses per source and time bin were then taken across validation set stimuli. The mean shown here summarizes these correlations
for sources assigned to the visual system areas with our anatomical parcellation. The increased SNR from averaging over repetitions improves encoding performance. However for most
participants the average over 10 repetitions appears to be close to a performance plateau.
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performance was measured – as everywhere in this manuscript – based
on how accurately a model for one source-timepoint combination could
predict source responses on the validation set. We could predict brain
activity based on the CNN representations for most participants. For the
top four participants (4, 12, 1 and 8) we show individual results in the
following. Maps for the remaining participants can be found in the sup-
plementary material.

The magnitude of the prediction-activity correlations on the valida-
tion set of the models explaining a source best is shown in Fig. 3. The
majority of high correlations was observed around the early visual cor-
tex. This corresponds with findings in similar studies using fMRI (e.g.
(Güçlü and van Gerven, 2015a)). From a temporal perspective we
observed the highest correlations during the first 75–135 ms after image
onset, and the magnitude diminished over time. Some participants
already showed predictable activity as early as 45–75 ms after
image onset.

3.1.2. Representational gradients
Fig. 4 shows which of the VGG-S layers can explain each individual

source best for our top participants. Significant sources and best layers for
source-time point correlations were determined within nested cross-
validation on the estimation set (similar to Fig. 2A from (Güçlü and
van Gerven, 2015a), adding views on the temporal dimension).

After training the model on all sources across the cortical surface, we
observed for all participants that only source responses across and around
the occipital lobe could be predicted above chance level (p<0:01,
Fig. 3. Prediction-activity correlations over time on the 10-times validation set for the encod
lobe. We show all above-chance correlations. We observe the highest correlations around the e

258
Benjamini-Hochberg FDR). In addition to this, Fig. 4 only shows sources
where the best layer resulted in a prediction-activity correlation of more
than 0.3 on the estimation set, observed as an average of the correlations
from the top-level cross validation folds. This threshold on the mean
correlation over folds was used for a subselection of results in order to
focus on sources that reach higher effect sizes, which can safely be called
a meaningful similarity of representations, instead of merely passing the
significance threshold.

The maps show that all layers are expressed before the time slice
starting at 195 ms for adjacent sources in one or more specific regions. In
time, the cascade starts with Layers 1 and 2, which cover a widespread
region of the occipital lobe within 75–105 ms. Layer 2 can explain more
sources than Layer 1 for all participants at this early stage. The features of
this second layer are texture-like combinations of Gabor features, for
instance lattices, and have slightly larger receptive fields than Layer 1.
Layer 1 in contrast predominantly represents small Gabor-like features,
resembling striate cortex receptive fields. The nature of the MEG signal
and how we recorded and analyzed it may not lead to detecting single
striate cortex receptive fields, which could be the reason that the
compositional nature of Layer 2 is a better explanation for striate cortical
surface responses.

The layers progress towards extrastriate regions that can be predicted
more accurately with higher convolutional (3–5) layers. The variability
of the maps across participants is striking. It is noticeable that several
sources that could be explained best with the low convolutional layers in
previous time slices are best explained by higher layers in later
ing models using the best-explaining layer as in Fig. 4. Views are centered at the occipital
arly visual cortex, and lower correlations in extrastriate areas.



Fig. 4. Source-wise layer assignments over time for four participants. Views are coronal from the posterior onto the occipital lobe. Each source-time bin combination gets assigned the
representation layer that explained it best during the nested cross-validation on the estimation set, measured in the average correlation across all folds. Sources are shown on individual
brains based on the Freesurfer models. Non-significant sources and significant ones with low correlations (<0.3) are discarded in these maps. The manifestation of the fully-connected
layers 6 and 7 first occurs after 135 ms for most participants. Before this time convolutional layers are expressed, starting with a widespread manifestation of layer 1 and 2 in the early
visual cortex region. After the expression of fully connected layers for some, but not all participants we see sustained activity, here shown for the time bin 405–435ms. The colormap was
chosen to reflect the division between convolutional and fully-connected layers.
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time steps.
In the time slices between 135 and 195 ms, Layer 6 and 7 are first

expressed. These are the first fully-connected layers, which means that
they lose most spatial information after the highest convolutional layers.
They are the most abstract representation of an image in VGG-S.

Note that as in (Güçlü and van Gerven, 2015a) the representation
from the softmax layer 8 is unable to explain any source optimally. Only
few sources pass the significance threshold when predicting with it,
resulting in very low prediction-activity correlations. This is not sur-
prising, since the layer represents a probability distribution over the 1,
000 categories of the ImageNet competition, on which VGG-S was orig-
inally trained. ImageNet categories are not defined in order to reflect
real-world categories exhaustively. E.g., a large subset of the 1,000 cat-
egories represents a specificity test on fungus and dog species. It is
possible to change the layer 8 semantic categorical representation by
fine-tuning the network towards a different ground truth of categories,
however for comparability we chose to stay with the original state of
the network.

Fig. 5 shows the mean (A) and median (B) onset times for each VGG-S
Fig. 5. Temporal onset of layers, average (A) and median (B) over the 12 participants for wh
layer explains at least one source best with correlations above 0.3. We indeed observe that the
onset. The first four convolutional layers first occur within the 75–105 ms time slice. Taking su
leads to an average rank correlation of 0.854 for the 10 subjects that expressed all 7 layers an
corrected, combined over subjects with Fisher's method).
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layer. It is equivalent to showing the layer onsets visible in Fig. 4 in time.
Note that due to our encoding procedure, the results presented here have
no higher temporal accuracy than 30ms (τ), so onset times were centered
between the time boundaries and Sheppard's correction was applied to
the standard deviations. We observe that the layer cascade follows the
hierarchy from VGG-S. Across participants all layers are traversed within
200 ms after stimulus onset, where the mean time needed to express the
most abstract Layer 7 is 150 ms. There is a temporal gap before and after
Layer 5.

MEG has higher spatial resolution than other direct non-invasive
measures of neural activity due to less skull distortion, which allows
much more accurate localization of the sources of measured activity.
While the spatial resolution is nevertheless limited, the higher resolution
can lead to more accurate localization of the anatomical origin of source
activity. We linked the source meshes to the recently introduced
anatomical parcellation by (Glasser et al., 2016) using the Human Con-
nectome Workbench software (Van Essen et al., 2013). The 181
anatomical labels for each hemisphere were clustered into the 22
top-level regions defined in the supplementary material of (Glasser et al.,
ich the encoding model was predictive. Shown is the first time bin in which the respective
hierarchy from Layer 1 to 7 is being expressed sequentially within 200 ms after stimulus
bject-wise Spearman's ρ correlations between layer numbers and time-binned onset times
d the two subject that missed layer 5 or layer 6 and 7 respectively (p<0:001 Bonferroni-



Fig. 6. Clusters of top-level anatomical regions and their visualization on inflated and flat left hemisphere maps, according to the supplementary material of (Glasser et al., 2016).
Each source was assigned the label of its corresponding template region. Note that the convolutional feature detectors in Layer 5 are special in that they already express complex templates
of full objects. Incorporating the special role of Layer 5, there is a temporal division between lower and mid convolutional layers (Layers 1–4) and the most abstract layers (Layers 5–7).
This is most apparent in the median (B).
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2016), of which we focus on regions around the occipital lobe active in
visual processing (see Fig. 6).

Using this strategy, we could gain insight into the anatomical regions
where deep neural network layers were expressed over time. In Fig. 7 we
observe that the lower convolutional layers (1–4) dominate across all
regions early in time. In contrast, the most abstract layers (6 and 7) are
expressed in and around the ventral stream and a neighbouring region
named MTþ and nearby, about 135 ms after stimulus onset. The region
MTþ and nearby could be functionally allocated to the dorsal stream
given its activation during the presence of moving geometric objects
stimuli. We believe that in this regard we demonstrate that parts of the
dorsal stream express higher order visual representations of static objects
Fig. 7. Number of sources in an anatomical region assigned to the network layers, average
all layers. The most abstract Layers 6 and 7 appear in the ventral stream and neighbouring reg
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as well, similar to what was shown in Cichy and Teng (2016) in MEG and
fMRI. However, in contrast to Cichy and Teng, we do not observe the
same for the more parietal Dorsal Stream region.

3.1.3. Specificity of low- and high-level layers
Given the temporal division between convolutional and fully con-

nected layers visible in Fig. 5 we investigated whether it also arose in
space over time. For this we contrasted the spatial distributions of
explanatory power of Layer 2 (a low-level convolutional layer, covering
more sources than Layer 1), Layer 4 (a high-level convolutional layer that
has not reached the object template representation as expressed by Layer
5), and Layer 6 (the first fully connected layer). Visual and quantitative
d over participants 4;12; 1;8. Early convolutional layers up to Layer 4 are expressed across
ions after 135 ms (sources with above 0.3 correlations).



Fig. 8. Spatial distribution of predictive power of convolutional and fully connected layers over the first 255 ms. Sources explained by early convolutional layers and fully connected
layers do not appear in the same regions. Convolutional layers explain similar regions, with the mid-level convolutional layers spreading out into extrastriate areas. For the visualization,
correlations for each layer are normalized by the highest correlation observed for each participant and Fisher-z corrected to allow linear comparability. Correlation values for the given
layers then fill either the red or the green RGB color channel, highlighting sources were one layer outperforms the other, and leading to a mixture (yellow) if both layers can explain a
source equally well.
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Fig. 9. Histograms of source-wise correlation differences between higher and lower layers
��ρhigh � ρlow

��. Fisher-z corrected correlations were used to allow linear comparability, and
normalized by the highest observed correlation for each participant (close to 1.0 for all). Sources with low prediction-activity correlation or with similar predictability appear around
0 while source better explainable by either red or green layers in the left or right modalities of the histogram respectively. We observe the progressing division over time into low and high
layers that we also saw in Fig. 8. The division is more pronounced when comparing the low convolutional to fully connected layers. Comparing only convolutional layers leads to more
sources in the central modality that represents similar explainability. This indicates a spatial division into regions with low-level information (including spatial) and high-level, abstract
information (fully-connected, translation-invariant).
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results can be found in Figs. 8 and 9. Layer 4 (and other higher con-
volutional layers) spread towards extrastriate regions, while showing
similar predictive power as Layer 2. The sources that could be explained
by the fully-connected Layer 6 are, in contrast, more separated from
those that can be explained by Layer 2. Fig. 9 shows how this division
evolves over time. The reason for this divide could involve different
representational properties of the contrasted representations: The fully-
connected layers lose most spatial information and can therefore be
considered more translation-invariant. They also carry the most abstract
representations needed for object identification. Convolutional layers
have localized responses, and carry mostly low-level structural
262
information. The contrasts presented here provide another indication
that higher layers (both convolutional and fully-connected) indeed
explain extrastriate visual system activity.
3.2. Decoding from MEG source responses

The 50 images from the validation set were used for a decoding
analysis. All encoding models were retrained on the full estimation set
using significant sources and optimal layers determined by the nested
cross-validation procedure. Source responses were predicted for the 50
images in the validation set and pairwise correlations with all measured



Fig. 10. Correlations (on resampled data) between predicted and measured averaged activity for four participants for the 50 images of the validation set, between 75 ms and
225 ms. Each row represents the measured source response patterns in this time slice for these 50 images, and each column the predicted source response patterns respectively. The matrix
color-codes the pairwise correlations between all predicted and measured response patterns. A prominent anti-diagonal thus indicates that predicted and measured response patterns
correspond when comparing for the same image, and differ when comparing to all others. Sources that reached higher average correlations than 0.3 during nested cross-validation on the
estimation set were selected for decoding. Predicted source responses were compared to measured responses resampled over ten repetitions

Fig. 11. Correlations (single trial) between predicted and measured averaged activity for four participants for the 50 images of single first trials from the validation set, between
75 ms and 225 ms.
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source responses were created. Fig. 10 color-codes these pairwise cor-
relations1 for participants 4, 1, 12 and 8, using averages over our ten
repeated validation set responses within 75–225 ms after image onset.
This time slice corresponds to the time that is needed for traversing the
neural network hierarchy. For all decoding analyses we again selected
the sources that reached higher correlations than 0.3 within the nested
cross-validation on the estimation set.

Similarly, Fig. 11 shows these correlations for the same participants
for single-trial responses, again for the 50 images in the validation set. As
expected the correlations between the predicted and observed responses
to a target image are lower, but still indicate decodability.

Fig. 12 shows the number of images that can be either identified or for
which the presented image belongs to the top-5 most correlated images,
for every participant. For most participants, this number of identified or in
top-5 choice images is above chance level (μ ¼ 2% and μ ¼ 10% respec-
tively) at most time points during image presentation. Up to 70% of the
presented images can be found within these top-5 choices, depending on
the participant. For a few participants this procedure fails however, and
we observe no trace of the learned model in the data. We know that
several subjects were not able to maintain their head position throughout
a block, and it is likely that not all of them were capable of focusing on
passively viewing objects for a long time.

The average of the decoding performances from Fig. 12 over the 11
participants showing above-chance decoding performance can be found
in Fig. 13. On average up to 20% of the presented images can be
1 Due to the nonlinear nature of (especially higher) Pearson's correlations we show
Fisher-z-transformed correlations, transforming all correlations into the range ½�∞;∞�
instead of ½0;1�. A Fisher-z corrected correlation of 1.2 corresponds to an uncorrected one
of 0.834 and comparisons of difference magnitudes can be made.
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identified in these participants, and in up to 58% of the cases the images
belong to the top-5 most correlated images. For single-trials these
numbers decline to 42% and 18% respectively (see Fig. 14). After an
initial peak of decoding performance, it declines during the initial
225 ms. After 300 ms, while the image is still on the screen, there is an
increase in decoding performance again.

All participants whose brain activity can be decoded above chance
level show sustained decodability over the whole image presentation
period. Participants 1, 6, 7, 9 and 12 also show above-chance decod-
ability after stimulus offset. For them the top-5 choice decoding rate is
still around 30% long after the image disappears at 600ms. Some of these
participants also show up to 10% above-chance identification rates in this
delay window.

4. Discussion

In this study, we show that stimulus representations from a deep
convolutional neural network can predict MEG source activity across the
visual system, both in space and time. Earlier layers of the network
predict neural activity as early as 45–75 ms after stimulus onset in early
visual regions, whereas higher layers predict later activity in higher vi-
sual regions. Encoding performance as a function of the number of rep-
etitions indicates that 10 repetitions are close to a performance plateau
for most participants (cf. Fig. 2).

The observed feed-forward activity sweep is completed around
150 ms on average, closely matching other studies on the temporal
properties of object recognition (Thorpe et al., 1996). In addition to this,
the temporal sequence of representations is indeed close to the hierarchy
which AlexNet-like networks such as VGG-S learn. Furthermore, the
anatomical association of the translation-invariant fully-connected



Fig. 12. Decoding performance over time for repeated trials. Predictions of source responses given a stimulus image using sources and best layer per model as selected on the
estimation set are correlated to actually measured activity (averaged over the 10 repetitions). The red line shows how many images could be directly identified; that is the correct image
achieved the highest correlation. The blue line shows how often the correct image was among the top-5 correlated images (top-5 choice). The dotted lines represent the chance levels
(identified: μ ¼ 2%, within top-5 choice: μ ¼ 10% for the 50 test set images) and p is >0:01 inside the light shaded areas respectively (binomial test). Time points without a data point
indicate that no sources were selected for its encoding models (not passing selection criteria on estimation set) which means that no predictions exist for them.

Fig. 13. Mean decoding performance over time for participants that showed above-chance decoding performance in Fig. 12. Error bars represent the standard error of the mean across
participants. Dotted lines represent the chance levels and the light shaded area p>0:01.
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Fig. 14. Single-trial mean decoding performance over time for participants that showed above-chance decoding performance in Fig. 12. Initial presentations of the 50 images in the
validation set were taken, so this is not influenced by diminished attention through repetitions or late blocks. Error bars represent the standard error of the mean, dotted lines chance and
the light shaded area p>0:01.
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abstract layers with the ventral stream matches earlier studies on the
localization of object recognition (DiCarlo et al., 2012). Finally, we were
able to invert the encoding models for decoding, resulting in far above
chance decodability. All analyses could be done in source space with
accurate individual source meshes.

Our results are in agreement with earlier results obtained by
comparing CNN layer representations with MEG-based neural represen-
tations (Cichy et al., 2016; Cichy and Teng, 2016). Notable differences
between our approach and previous work are that our results have been
obtained by an encoding approach instead of an RSA approach. The
encoding approach affords the prediction of individual responses in MEG
source space rather than the assessment of representational similarity
across time using sensor-level data. Furthermore, the encoding approach
affords decoding of neural responses using an identification strategy.
Estimation of an encoding model does require an order of magnitude
more data compared to the use of an RSA approach.

Our results depend on MEG preprocessing choices such as parameters
for low-pass filtering, ICA-based signal cleaning or thresholds for trial
rejection. Hence, improvements in encoding performance are to be ex-
pected by further optimizing preprocessing with the aim of higher
encoding performances. However, these optimizations are unlikely to
affect our main conclusions, for instance those concerning the identified
representational gradient.

We tested whether our results were driven by low-level image prop-
erties using the luminance channel from the L*a*b* color space as a
control model. However this did not yield comparable predictive power –
depending on the participant, at most only a few sources around the early
visual system passed significance thresholds. We could not construct
meaningful maps or decode from these alternative encoding models.

An intriguing finding of the present work is that early in time, most
regions are predicted well by low-level layers, whereas later in time, most
regions are predicted well by high-level layers (Fig. 7). Even early visual
areas are described well by high-level layers related to abstract semantic
features as time progresses. This might point towards a recurrent inte-
gration process where semantic or broader structural scene information
is distributed across brain regions. At the same time, given the limited
spatial resolution of MEG, we cannot rule out that these results are due to
a spillover of information encoded in nearby brain regions.

The decoding results indicate that source-space encoding on MEG
data can be suitable for more advanced decoding techniques such as
reconstruction rather than identification of visual stimuli. Especially
when using video stimuli, MEG would not suffer from the low-pass
filtering effect of the hemodynamic response function that affects fMRI
movie decoding. However, as expected given the nature of the noisier,
less localizable MEG signal we do not reach the accuracies demonstrated
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in fMRI (Kay et al., 2008; Güçlü and van Gerven, 2015a). The
above-chance decodability observed post-stimulus offset in some par-
ticipants indicates that, using a suitable experimental design, we may be
able to decode complex stimuli fromworking memory and imagery using
our approach.

As demonstrated by our findings, convolutional neural network
models of the visual system yield insight into the spatiotemporal dy-
namics of neural information processing.

Neural networks have been shown to strongly benefit from biologi-
cally inspired mechanisms such as local convolutional operations (LeCun
and Bengio (1995)), DropOut (Hinton et al., 2012) or ReLU non-
linearities (He et al., 2015). At the same time, there are ample opportu-
nities to improve model fit by taking other biologically plausible
principles of neural information processing into account. Future work
could focus on neural networks that make use of alternative architectures
(e.g., residual and recurrent neural networks (He et al., 2015; Hochreiter
and Schmidhuber, 1997)), solve different kinds of problems (e.g. se-
mantic segmentation (Güçlü et al., 2017)), are trained on other kinds of
data (e.g. multimodal data (Güçlütürk et al., 2016)), use alternative
objective functions (e.g., maximizing future frame prediction (Mathieu
et al., 2015)) and/or use a different learning paradigm altogether (Song
et al., 2016; Bosch et al., 2016).

Concluding, we expect new advances that bridge the gap between
artificial and biological brains to ultimately provide new insight into the
computational basis of neural information processing.
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